首页> 外文期刊>Formal Aspects of Computing >Deciding orthogonal bisimulation
【24h】

Deciding orthogonal bisimulation

机译:确定正交双仿真

获取原文
获取原文并翻译 | 示例

摘要

Bergstra, Ponse and van der Zwaag introduced in 2003 the notion of orthogonal bisimulation equivalence on labeled transition systems. This equivalence is a refinement of branching bisimulation, in which consecutive tau's (silent steps) can be compressed into one (but not zero) tau's. The main advantage of orthogonal bisimulation is that it combines well with priorities. Here we solve the problem of deciding orthogonal bisimulation equivalence in finite (regular) labeled transition systems. Unlike as in branching bisimulation, in orthogonal bisimulation, cycles of silent steps cannot be eliminated. Hence, the algorithm of Groote and Vaandrager (1990) cannot be adapted easily. However, we show that it is still possible to decide orthogonal bisimulation with the same complexity as that of Groote and Vaandrager's algorithm. Thus if n is the number of states, and m the number of transitions then it takes O(n(m + n)) time to decide orthogonal bisimilarity on finite labeled transition systems, using O(m + n) space.
机译:Bergstra,Ponse和van der Zwaag于2003年引入了带标记的过渡系统上的正交双仿真对等概念。这种等效性是分支双模拟的改进,其中可以将连续的tau(静默步长)压缩为一个(但不为零)tau。正交双仿真的主要优点是它与优先级很好地结合在一起。在这里,我们解决了在有限(常规)标记过渡系统中确定正交双仿真等效性的问题。与分支双仿真不同,在正交双仿真中,静噪步骤的周期无法消除。因此,Groote和Vaandrager(1990)的算法很难适应。但是,我们表明,仍然可以以与Groote和Vaandrager算法相同的复杂度来决定正交双仿真。因此,如果n是状态数,而m是转移数,则使用O(m + n)空间需要O(n(m + n))时间来确定有限标记转移系统的正交双相似性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号