首页> 外文期刊>Forest Science and TechnologyForest Science and Technology >Forest plot volume estimation using National Forest Inventory, Forest Type Map and Airborne LiDAR data
【24h】

Forest plot volume estimation using National Forest Inventory, Forest Type Map and Airborne LiDAR data

机译:使用国家森林清单,森林类型图和机载LiDAR数据估算林地体积

获取原文
获取原文并翻译 | 示例

摘要

The importance of estimating forest volume has been emphasized by increasing interest on carbon sequestration and storage which can be converted from volume estimates. With importance of forest volume, there are growing needs for developing efficient and unbiased estimation methods for forest volume using reliable data sources such as the National Forest Inventory (NFI) and supplementary information. Therefore, this study aimed to develop a forest plot volume model using selected explanatory variables from each data type (only Forest Type Map (FTM), only airborne LiDAR and both datasets), and verify the developed models with forest plot volumes in 60 test plots with the help of the NFI dataset. In linear regression modeling, three variables (LiDAR height sum, age, and crown density class) except diameter class were selected as explanatory independent variables. These variables generated the four forest plot volume models by combining the variables of each data type. To select an optimal forest plot volume model, a statistical comparing process was performed between four models. In verification, Model no. 3 constructed by both FTM and airborne LiDAR was selected as an optimal forest plot volume model through comparing root mean square error (RMSE) and coefficient of determination (R 2). The selected best performance model can predict the plot volume derived from NFI with RMSE and R 2 at 50.41 (m3) and 0.48, respectively.View full textDownload full textKeywordsairborne LiDAR, forest plot volume, Forest Type Map, linear regression analysis, National Forest InventoryRelated var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; Add to shortlist Link Permalink http://dx.doi.org/10.1080/21580103.2012.673749
机译:通过增加对碳固存和碳存储的兴趣,可以强调估计森林量的重要性,可以将其从数量估计中转换出来。随着森林容量的重要性,对使用可靠数据源(例如国家森林清单(NFI)和补充信息)开发有效且无偏见的森林容量估算方法的需求日益增长。因此,本研究旨在使用每种数据类型(仅森林类型图(FTM),仅机载LiDAR和两个数据集)中选择的解释变量来开发林地体积模型,并在60个试验地中验证具有林地体积的已开发模型在NFI数据集的帮助下。在线性回归建模中,选择三个变量(LiDAR高度总和,年龄和冠状密度类别)作为直径自变量,而不是直径类别。这些变量通过组合每种数据类型的变量生成了四个林地容积模型。为了选择最佳的林地体积模型,在四个模型之间进行了统计比较过程。在验证中,型号通过比较均方根误差(RMSE)和测定系数(R 2 ),选择了由FTM和机载LiDAR共同构建的3个模型作为最佳林地体积模型。选择的最佳性能模型可以预测从NFI得出的,RMSE和R 2 分别为50.41(m 3 )和0.48的绘图体积。查看全文下载全文关键词森林地积量,森林类型图,线性回归分析,国家森林资源清单,more“,pubid:” ra-4dff56cd6bb1830b“};添加到候选列表链接永久链接http://dx.doi.org/10.1080/21580103.2012.673749

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号