首页> 外文期刊>Food research international >Heat stability of Lactobacillus rhamnosus GG and its cellular membrane during droplet drying and heat treatment
【24h】

Heat stability of Lactobacillus rhamnosus GG and its cellular membrane during droplet drying and heat treatment

机译:鼠李糖乳杆菌GG及其细胞膜在液滴干燥和热处理过程中的热稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

Dehydration and thermal stresses are generally considered as two mains factors deactivating probiotic cells during droplet drying, as typically in industrial spray drying for producing active dry probiotics. However, little is known about how cells respond to these interplaying stresses in the short period of drying. This study showed that dehydration process could alleviate the detrimental effect of thermal stress to a certain extent, evidenced by that probiotic cells could withstand higher temperature in a single droplet drying (SDD) process compared to sole heat treatment. During SDD at 90 degrees C, droplet temperature increased with time, and the inactivation of Lactobacillus rhamnosus GG (LGG) was initially observed at droplet temperature of 61-65 degrees C. By contrast, the transition from the maintenance of LGG viability to rapid deactivation occurred at around 54 degrees C in heat treatment without dynamic dehydration. Possible mechanisms for the enhanced thermotolerance were investigated from drying kinetics level and cellular level. The favorable temperature profile and the decrease in droplet water activity during drying may benefit cell survival. The cytoplasmic membrane of LGG was more stable at elevated temperatures of 60-65 degrees C during drying, which might be related to the high viscosity of semi-dried particles mitigating the leakage of intracellular substances. Trehalose demonstrated a strong thermoprotective effect over lactose in heat treatment, but the protection was less effective at the later stage of drying. These results dissected the influence of the interplaying stresses on probiotic cells for the first time during droplet drying and also suggested possible approaches for improving cell survival in dried particles. Components capable of protecting cellular membrane are recommended for developing protectant formulation in spray drying of probiotics.
机译:脱水和热应力通常被认为是液滴干燥过程中使益生菌细胞失活的两个主要因素,通常在工业喷雾干燥中用于生产活性干燥益生菌。然而,关于细胞在干燥的短时间内如何响应这些相互作用的应力知之甚少。这项研究表明,脱水过程可以在一定程度上减轻热应激的不利影响,这表明与单一热处理相比,益生菌细胞在单滴干燥(SDD)过程中可以承受更高的温度。在90摄氏度的SDD期间,液滴温度会随时间增加,最初在61-65摄氏度的液滴温度下观察到鼠李糖乳杆菌GG(LGG)的失活。相反,从维持LGG活力向快速失活的过渡发生在约54摄氏度的热处理中,没有动态脱水。从干燥动力学水平和细胞水平研究了提高耐热性的可能机制。有利的温度曲线和干燥过程中水滴水分活性的降低可能有益于细胞存活。 LGG的细胞质膜在干燥过程中在60-65摄氏度的高温下更为稳定,这可能与半干燥颗粒的高粘度减轻了细胞内物质的泄漏有关。海藻糖在热处理中表现出比乳糖强大的热保护作用,但在干燥的后期保护作用较差。这些结果首次剖析了相互作用压力对液滴干燥过程中益生菌细胞的影响,并提出了改善干燥颗粒中细胞存活率的可能方法。推荐使用能保护细胞膜的成分开发益生菌喷雾干燥中的保护剂配方。

著录项

  • 来源
    《Food research international》 |2018年第10期|56-65|共10页
  • 作者单位

    Soochow Univ, China Australia Joint Res Ctr Future Dairy Mfg, Sch Chem & Environm Engn, Coll Chem Chem Engn & Mat Sci, 199 Ren Ai Rd,Suzhou Ind Pk, Suzhou 215123, Jiangsu, Peoples R China;

    Soochow Univ, China Australia Joint Res Ctr Future Dairy Mfg, Sch Chem & Environm Engn, Coll Chem Chem Engn & Mat Sci, 199 Ren Ai Rd,Suzhou Ind Pk, Suzhou 215123, Jiangsu, Peoples R China;

    Monash Univ, Dept Chem Engn, 18 Alliance Lane, Clayton, Vic 3800, Australia;

    Soochow Univ, China Australia Joint Res Ctr Future Dairy Mfg, Sch Chem & Environm Engn, Coll Chem Chem Engn & Mat Sci, 199 Ren Ai Rd,Suzhou Ind Pk, Suzhou 215123, Jiangsu, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Active dry probiotics; Inactivation process; Protectant; Protective mechanism; Single droplet drying; Spray drying; Trehalose;

    机译:活性干益生菌;灭活过程;保护剂;保护机理;单滴干燥;喷雾干燥;海藻糖;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号