首页> 外文期刊>Finite fields and their applications >On the parity of the number of irreducible factors of self-reciprocal polynomials over finite fields
【24h】

On the parity of the number of irreducible factors of self-reciprocal polynomials over finite fields

机译:有限域上自反多项式的不可约因子数的奇偶性

获取原文
获取原文并翻译 | 示例

摘要

Using the Stickelberger-Swan theorem, the parity of the number of irreducible factors of a self-reciprocal even-degree polynomial over a finite field will be hereby characterized. It will be shown that in the case of binary fields such a characterization can be presented in terms of the exponents of the monomials of the self-reciprocal polynomial.
机译:使用Stickelberger-Swan定理,将在有限域上表征自反偶次多项式的不可约因子数的奇偶性。将显示出,在二进制字段的情况下,可以根据自可逆多项式的单项式的指数来表示这种特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号