首页> 外文期刊>Finite fields and their applications >Matroidal structure of skew polynomial rings with application to network coding
【24h】

Matroidal structure of skew polynomial rings with application to network coding

机译:偏多项式环的拟阵结构及其在网络编码中的应用

获取原文
获取原文并翻译 | 示例

摘要

Over a finite field F-q(m), the evaluation of skew polynomials is intimately related to the evaluation of linearized polynomials. This connection allows one to relate the concept of polynomial independence defined for skew polynomials to the familiar concept of linear independence for vector spaces. This relation allows for the definition of a representable matroid called the F-q(m) [x;sigma]-matroid, with rank function that makes it a metric space. Specific submatroids. of this matroid are individually bijectively isometric to the projective geometry of F-q(m), equipped with the subspace metric. This isometry allows one to use the F-q(m) [x;sigma]-matroid in a matroidal network coding application. (C) 2017 Elsevier Inc. All rights reserved.
机译:在有限域F-q(m)上,偏斜多项式的评估与线性化多项式的评估密切相关。这种联系使人们可以将为偏斜多项式定义的多项式独立性的概念与向量空间的线性独立性的熟悉概念相关联。该关系允许定义可表示的拟阵拟定的F-q(m)[x; sigma]拟定拟阵,其秩函数使其成为度量空间。特定的亚类动物。该类拟阵的每一个都与F-q(m)的投影几何分别双射等距,并配备了子空间度量。该等轴测图允许人们在拟弦网络编码应用中使用F-q(m)[x; sigma]拟阵。 (C)2017 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号