首页> 外文期刊>Finite Elements in Analysis and Design >Sheet metal forming analysis using a large strain anisotropic multiplicative plasticity formulation, based on elastic correctors, which preserves the structure of the infinitesimal theory
【24h】

Sheet metal forming analysis using a large strain anisotropic multiplicative plasticity formulation, based on elastic correctors, which preserves the structure of the infinitesimal theory

机译:使用基于弹性校正器的大应变各向异性乘性塑性公式进行的钣金成形分析,保留了无穷小理论的结构

获取原文
获取原文并翻译 | 示例

摘要

Sheet metal forming is a very important process in industry to create a wide variety of goods. The analysis of local ductility and residual stresses is important both to assess the viability of the manufacturing process and the reliability of the resulting elements in service. An example is crash-worthiness, where remaining ductility and residual stresses govern the safety of the overall structure during the impact.A main ingredient of finite element simulations for sheet metal forming in industry is a robust continuum-based computational algorithm for large strain elastoplasticity which includes both elastic and plastic anisotropy, as well as mixed hardening. The theory should use exactly-integrable (conservative) elastic and hardening behaviors based on physically motivated proper state variables and, if possible, result in a simple integration algorithm. In this work we implement a novel large strain formulation for anisotropic hyperelasto-plasticity in a user subroutine of the commercial program ADINA to perform sheet metal forming simulations, testing the robustness and suitability of the model for industry, as well as its accuracy. The formulation is based on a new approach to the treatment of large strain kinematics, using logarithmic elastic corrector rates instead of plastic rates. Furthermore, kinematic hardening is formulated without an explicit backstress. We compare and discuss the results with those in the literature which use alternative frameworks.
机译:钣金成型是工业上制造各种商品的非常重要的过程。局部延展性和残余应力的分析对于评估制造过程的可行性以及所得到的服务要素的可靠性都非常重要。一个例子是耐撞性,其中剩余的延展性和残余应力控制着冲击过程中整个结构的安全性。工业上钣金成形的有限元模拟的主要成分是基于鲁棒性的基于连续体的大应变弹塑性计算算法,该算法可满足以下条件:包括弹性和塑性各向异性,以及混合硬化。该理论应基于物理动机的适当状态变量使用完全可积分(保守)的弹性和硬化行为,并在可能的情况下得出简单的积分算法。在这项工作中,我们在商业程序ADINA的用户子例程中为各向异性超弹塑性实现了一种新颖的大应变公式,以执行钣金成形仿真,测试模型的鲁棒性和适用性以及行业精度。该配方基于一种处理大应变运动学的新方法,使用对数弹性校正率而不是塑性率。此外,在没有明显背压的情况下制定了运动强化。我们将结果与使用替代框架的文献进行比较和讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号