首页> 外文期刊>Finite Elements in Analysis and Design >A General Theorem For Adjacency Matrices Of Graph Products And Application In Graph Partitioning For Parallel Computing
【24h】

A General Theorem For Adjacency Matrices Of Graph Products And Application In Graph Partitioning For Parallel Computing

机译:图产品邻接矩阵的一般性定理及其在并行计算图划分中的应用

获取原文
获取原文并翻译 | 示例

摘要

Many regular models can be viewed as the graph products of two ore more subgraphs know as their generators. In this paper, a general theorem is presented for the formation of adjacency matrices using a series of algebraic relationships. These operations are performed on the adjacency matrices of the generators. The Laplacian matrix of the graph product is then formed and the second eigenvalue and the corresponding eigenvector are used for the bisection of the regular graphs associated with space structures or finite element models.
机译:许多常规模型可以看作是两个或更多个子图的图形乘积,它们被称为生成器。本文提出了利用一系列代数关系形成邻接矩阵的一般性定理。这些操作是在生成器的邻接矩阵上执行的。然后形成图积的拉普拉斯矩阵,并将第二特征值和对应的特征向量用于与空间结构或有限元模型关联的正则图的二等分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号