首页> 外文期刊>Finite elements in analysis & design >Adaptive meshing and analysis using transitional quadrilateral and hexahedral elements
【24h】

Adaptive meshing and analysis using transitional quadrilateral and hexahedral elements

机译:使用过渡四边形和六面体元素的自适应网格划分和分析

获取原文
获取原文并翻译 | 示例

摘要

In adaptive finite element analysis, h-type refinement can be achieved basically in two ways: (ⅰ) small elements are connected directly to large elements with full compatibility at element interfaces and (ⅱ) transitional elements are employed to link up elements of different sizes. While there is no difficulty in generating gradation triangular and tetrahedral meshes, generation of quadrilateral and hexahedral meshes of varying element sizes without severe element distortion proved to be a formidable task. The use of transitional elements allows meshes to be refined without element distortion, and the price that we have to pay is to develop general and efficient transitional elements in two and three dimensions. Transition elements, which satisfy the patch test, can be formulated by means of the enhanced assumed strain (EAS) method, which are in general more efficient than the incompatible elements. Alternatively, in this paper, we try to develop a series of versatile transition elements based on the hybrid stress approach. Direct designing stress fields for transition elements is just too complicated and especially impractical for 3D transition hexahedral elements. However, we found that the same stress field could be used for transition elements with variable number of nodes. By means of elimination and through numerical studies on some benchmark problems, 7- and 24-mode stress fields are adopted, respectively for 2D quadrilateral and 3D hexahedral hybrid stress transition elements. Strategy for generating refinement transition element meshes will be discussed, and the size of elements generated by the 1-irregular mesh restriction is compared with the predicted element size. The comparison shows that the meshing strategy employed in this study can effectively lead to an optimal mesh whose solution error is smaller than the prescribed one.
机译:在自适应有限元分析中,基本上可以通过两种方式实现h型细化:(ⅰ)将小元素直接连接到大型元素,并在元素接口处具有完全的兼容性;(ⅱ)过渡元素用于链接不同大小的元素。虽然生成渐变三角形和四面体网格没有困难,但事实证明,生成具有不同元素尺寸且没有严重元素变形的四边形和六面体网格是一项艰巨的任务。过渡元素的使用可以在不使元素变形的情况下细化网格,而我们必须付出的代价是在二维和三维中开发通用且有效的过渡元素。可以通过增强假定应变(EAS)方法来制定满足补丁测试要求的过渡元素,该方法通常比不兼容元素更有效。另外,在本文中,我们尝试基于混合应力方法开发一系列通用过渡元素。直接设计过渡元素的应力场太复杂了,对于3D过渡六面体元素来说尤其不切实际。但是,我们发现相同的应力场可以用于节点数可变的过渡元素。通过消除和通过对一些基准问题的数值研究,分别对2D四边形和3D六面体混合应力过渡元素采用7和24模应力场。将讨论生成细化过渡元素网格的策略,并将通过1-不规则网格限制生成的元素的大小与预测的元素大小进行比较。比较表明,本研究中采用的网格划分策略可以有效地导致最优网格划分,该网格的求解误差小于规定的误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号