首页> 外文期刊>Finite Elements in Analysis and Design >An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates
【24h】

An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates

机译:等梯度有限元公式,用于功能梯度板的热屈曲分析

获取原文
获取原文并翻译 | 示例

摘要

We address in this paper an isogeometric finite element approach (IGA) in combination with the third-order deformation plate theory (TSDT) for thermal buckling analysis of functionally graded material (FGM) plates. TSDT accounts shear deformation effect without requiring any shear correction factors. The IGA utilizes non-uniform rational B-spline (NURBS) as basis functions, resulting in both exact geometric representation and high order approximations. It enables to achieve easily the smoothness with arbitrary continuous order. The present method hence fulfills the C~1-requirement of TSDT model. The material properties of FGM plates are assumed to vary according to power law distribution of the volume fraction of constituents. The temperature field through the plate thickness is described by a polynomial series. The influences of length to thickness ratio, aspect ratio, boundary conditions and material property on the temperature critical buckling are investigated. Numerical results of circular and rectangular plates are provided to validate the effectiveness of the proposed method.
机译:我们在本文中介绍了等几何有限元方法(IGA)与三阶变形板理论(TSDT)相结合的功能梯度材料(FGM)板的热屈曲分析。 TSDT无需任何剪切校正因子即可说明剪切变形效应。 IGA利用非均匀有理B样条(NURBS)作为基本函数,从而获得精确的几何表示和高阶近似。它使得能够以任意连续顺序容易地实现平滑度。因此,本方法满足了TSDT模型的C-1要求。假设FGM板的材料性能根据组分体积分数的幂律分布而变化。贯穿板厚度的温度场由多项式级数描述。研究了长宽比,长宽比,边界条件和材料性能对温度临界屈曲的影响。提供了圆形和矩形板的数值结果,以验证该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号