首页> 外文期刊>Finite Elements in Analysis and Design >A comparative numerical study of different finite element formulations for 2D model elliptic problems: Continuous and discontinuous Galerkin, mixed and hybrid methods
【24h】

A comparative numerical study of different finite element formulations for 2D model elliptic problems: Continuous and discontinuous Galerkin, mixed and hybrid methods

机译:二维模型椭圆问题的不同有限元公式的比较数值研究:连续和不连续Galerkin,混合和混合方法

获取原文
获取原文并翻译 | 示例

摘要

In this work, different finite element formulations for elliptic problems are implemented and compared, in terms of accuracy versus number of required degrees of freedom. The implemented formulations are: (a) the classical H-1 weak formulation (continuous); (b) the non-symmetric discontinuous Galerkin formulation by Baumann, Oden and Babuska; (c) a mixed discontinuous Galerkin formulation, known as Local Discontinuous Galerkin (LDG); (d) a mixed H(div)-conforming formulation; (e) a primal hybrid formulation. In order to compare the methods, two 2-dimensional test problems are approximated, one having a smooth solution and the second one presenting a square root singularity in a boundary node. The different formulations are compared in terms of the L-2 norm of the approximation errors in the solution and in its gradient (the flux). The tests are performed with h refinement with constant order of approximation p, as well as for a given hp refinement procedure. For the problem with a smooth solution, the results confirm convergence orders predicted by theoretical a priori error estimates. As expected, the application of hp refinement to the singular problem improves considerably the performance of all methods. Furthermore, due to the type of the singularity (square root), the efficiency of continuous and discontinuous Galerkin formulations is further improved by using enriched spaces with quarter-point elements. Regarding continuous, hybrid and mixed formulations, the effect of using static condensation of element equations is also analysed, in order to illustrate the reduction in the global system of equations in each case. A third comparison is given in terms of the conservation of the flux over a curve around a singularity. (C) 2016 Elsevier B.V. All rights reserved.
机译:在这项工作中,根据精度与所需自由度的数量,实现并比较了椭圆问题的不同有限元公式。实施的公式为:(a)经典的H-1弱公式(连续的); (b)Baumann,Oden和Babuska的非对称不连续Galerkin公式; (c)混合的不连续Galerkin配方,称为局部不连续Galerkin(LDG); (d)符合H(div)规定的混合配方; (e)原始的混合制剂。为了比较这些方法,对两个二维测试问题进行了近似,其中一个具有平滑解,而第二个则在边界节点中表现出平方根奇异点。根据溶液中的近似误差的L-2范数及其梯度(通量)比较不同的公式。测试是在h细化的情况下以近似p的恒定阶数进行的,并且针对给定的hp细化程序进行。对于具有平滑解的问题,结果确认了理论上的先验误差估计所预测的收敛阶。不出所料,将hp改进应用于单个问题可以显着提高所有方法的性能。此外,由于奇异点(平方根)的类型,通过使用具有四分点元素的富集空间,可以进一步提高连续和不连续Galerkin公式的效率。对于连续,混合和混合公式,还分析了使用元素方程静态缩合的效果,以说明每种情况下整体方程系统的减少。根据通量在围绕奇点的曲线上的守恒性给出第三比较。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号