首页> 外文期刊>Fatigue & Fracture of Engineering Materials & Structures >Application of artificial neural network for predicting plain strain fracture toughness using tensile test results
【24h】

Application of artificial neural network for predicting plain strain fracture toughness using tensile test results

机译:人工神经网络在拉伸试验结果预测平面应变断裂韧性中的应用

获取原文
获取原文并翻译 | 示例

摘要

A back-propagation neural network was applied to predicting the K-IC values using tensile material data and investigating the effects of crack plane orientation and temperature. The 595 K-IC data of structural steels were used for training and testing the neural network model. In the trained neural network model, yield stress has relatively the most effect on K-IC value among tensile material properties and K-IC value was more sensitive to K-IC test temperature than to crack plane orientation valid in the range of material data covered in this study. The performance of the trained artificial neural network (ANN) was evaluated by comparing output of the ANN with results of a conventional least squares fit to an assumed shape. The conventional linear or nonlinear least squares fitting methods gave very poor fitting results but the results predicted by the trained neural network were considerably satisfactory. This study shows that the neural network can be a good tool to predict K-IC values according to the variation of the temperature and the crack plane orientation using tensile test results.
机译:应用反向传播神经网络使用拉伸材料数据预测K-IC值,并研究裂纹平面取向和温度的影响。结构钢的595 K-IC数据用于训练和测试神经网络模型。在训练后的神经网络模型中,屈服应力对拉伸材料特性中的K-IC值影响最大,并且在涵盖的材料数据范围内,K-IC值对K-IC测试温度比对裂纹平面取向更敏感。在这个研究中。通过将人工神经网络(ANN)的输出与常规最小二乘法拟合到假定形状的结果进行比较,可以评估经过训练的人工神经网络(ANN)的性能。传统的线性或非线性最小二乘拟合方法给出的拟合结果非常差,但是经过训练的神经网络预测的结果相当令人满意。这项研究表明,神经网络可以作为使用拉伸测试结果根据温度和裂纹平面取向的变化预测K-IC值的良好工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号