首页> 外文期刊>Fatigue & fracture of engineering materials and structures >Prediction of residual fatigue life under interspersed mixed-mode (Ⅰ and Ⅱ) overloads by Artificial Neural Network
【24h】

Prediction of residual fatigue life under interspersed mixed-mode (Ⅰ and Ⅱ) overloads by Artificial Neural Network

机译:人工神经网络预测混合(Ⅰ和Ⅱ)混合载荷下的残余疲劳寿命

获取原文
获取原文并翻译 | 示例

摘要

Mixed-mode (Ⅰ and Ⅱ) overloads are often encountered in an engineering structure due to either alteration of the loading direction or the presence of randomly oriented defects. Prediction of fatigue life in these cases is more complex than that of mode-I overloads. The objective of this study is to explore the use of an artificial neural network (ANN) model for the prediction of fatigue crack growth rate under interspersed mixed-mode (Ⅰ and Ⅱ) overload. The crack growth rates as predicted by the ANN method on two aluminium alloys, 7020 T7 and 2024 T3 have been compared with the experimental data and an Exponential Model. It is observed that the predicted results are in good agreement and facilitate determination of residual fatigue life.
机译:由于载荷方向的改变或存在随机取向的缺陷,在工程结构中经常会遇到混合模式(Ⅰ和Ⅱ)过载。在这些情况下,疲劳寿命的预测要比I型过载的预测更为复杂。这项研究的目的是探索使用人工神经网络(ANN)模型预测散在混合模式(Ⅰ和Ⅱ)超载下的疲劳裂纹扩展率。通过ANN方法预测的两种铝合金7020 T7和2024 T3的裂纹扩展速率已与实验数据和指数模型进行了比较。可以看出,预测结果吻合良好,有助于确定残余疲劳寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号