首页> 外文期刊>Fatigue & Fracture of Engineering Materials & Structures >An analytical relation between the Weibull and Basquin laws for smooth and notched specimens and application to constant amplitude fatigue
【24h】

An analytical relation between the Weibull and Basquin laws for smooth and notched specimens and application to constant amplitude fatigue

机译:光滑和缺口试样的威布尔定律和巴斯金定律之间的解析关系及其在恒定振幅疲劳中的应用

获取原文
获取原文并翻译 | 示例

摘要

Starting from the classical definition of stress-life Wohler curve in the form of the Basquin law, an analytical procedure for the calibration of the four parameters' Woehler curve (the Weibull law) for a plain specimen is proposed. The obtained parameters are then adjusted by means of an additional slope factor preserving the inflection point of the curve while changing its slope in order to model the experimental observations in which an increase of the scatter in life prediction is observed when reducing the stress amplitude. The same approach has then been adopted to calibrate the Weibull law parameters for a notched specimen, and the fitting slope factor has been found to be a value that changes with the material but remains constant with the stress concentration factor. The findings have been validated with existing experimental data on 2024-T3 aluminum alloy and normalized SAE 4130 steel.
机译:从Basquin定律形式的应力-寿命Wohler曲线的经典定义出发,提出了一种对标本的四个参数的Woehler曲线(威布尔定律)进行标定的解析方法。然后,通过保留坡度拐点并同时改变其斜率的附加坡度因数,对获得的参数进行调整,以便对实验观察进行建模,在该实验观察中,当降低应力幅值时,寿命预测中的散射会增加。然后,采用了相同的方法来校准带缺口试样的韦布尔定律参数,并且已发现拟合斜率系数是随材料变化但随应力集中系数保持不变的值。该发现已通过有关2024-T3铝合金和标准SAE 4130钢的现有实验数据进行了验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号