首页> 外文期刊>Expert Systems >Image super resolution model enabled by wavelet lifting with optimized deep convolutional neural network
【24h】

Image super resolution model enabled by wavelet lifting with optimized deep convolutional neural network

机译:用优化的深卷积神经网络,通过小波提升使能实现超分辨率模型

获取原文
获取原文并翻译 | 示例

摘要

This paper plans to develop an intelligent super resolution model with the linkage of Wavelet lifting scheme and Deep learning algorithm. Before initiating the resolution procedure, the entire HR images are converted into Low Resolution (LR) images using bicubic interpolation-based downsampling and upsampling. Further, the Wavelet lifting scheme helps to generate the four subbands of each image like LR wavelet Sub-Bands for LR images, and High Resolution (HR) wavelet Sub-Bands for HR images. The residual image is generated by taking the difference between the LR wavelet Sub-Bands and HR wavelet Sub-Bands images. The proposed model involves two main phases: Training phase and Testing. The training phase trains the residual image of all images by Deep Convolutional Neural Network with LR wavelet Sub-Bands as input and residual image as target. On the other hand, in testing phase, the LR wavelet Sub-Bands query image is subjected to Deep Convolutional Neural Network, which outputs the concerned residual image. This generated residual image is summed with LR wavelet Sub-Bands image, followed by inverse wavelet lifting scheme to obtain the final super resolution image. The main contribution of this paper is to improve the conventional Deep Convolutional Neural Network by optimizing the number of hidden layer, and hidden neurons using modified Whale Optimization Algorithm called Average Fitness Enabled Whale Optimization Algorithm by considering the objective of maximizing the Peak Signal-to-Noise Ratio. Finally, the proposed method achieves an improved quality of the results which is comparable the existing models.
机译:本文计划开发智能超分辨率模型,与小波提升方案和深层学习算法的联系。在启动分辨率之前,使用基于双向插值的下采样和上采样将整个HR图像转换为低分辨率(LR)图像。此外,小波提升方案有助于生成用于LR图像的LR小波子带的每个图像的四个子带,以及用于HR图像的高分辨率(HR)小波子带。通过取代LR小波子频带和HR小波子带图像之间的差异来生成残差图像。拟议的模型涉及两个主要阶段:训练阶段和测试。训练阶段通过具有LR小波子频带的深卷积神经网络作为输入和残差图像作为目标来训练所有图像的残余图像。另一方面,在测试阶段,对LR小波子带查询图像进行深卷积神经网络,其输出有关剩余图像。该生成的残差图像与LR小波子带图像一起求和,然后是逆小波提升方案,以获得最终的超分辨率图像。本文的主要贡献是通过优化隐藏层的数量来改善传统的深度卷积神经网络,并使用称为平均要素的修改鲸鲸优化算法通过考虑最大化峰值信号 - 到 - 噪声比。最后,该方法实现了与现有模型相当的结果的提高质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号