首页> 外文期刊>Expert Systems >Expert system design for credit risk evaluation using neuro-fuzzy logic
【24h】

Expert system design for credit risk evaluation using neuro-fuzzy logic

机译:使用神经模糊逻辑进行信用风险评估的专家系统设计

获取原文
获取原文并翻译 | 示例

摘要

Over the past few years, the credit risk evaluation of micro-, small- and medium-scale enterprises by banks and financial institutions has been an active area of research under the joint pressure of regulators and shareholders. The credit rating assessment forms an important part of credit risk assessment, involving risk parameters such as financial, business, industry and management areas. The mathematical models of evaluation are at the core of modern credit risk management systems. This paper focuses on the use of fuzzy logic and neural network techniques to design a methodology for evaluating the credit worthiness of the entrepreneur. The neuro-fuzzy logic approach takes into account the minute details of credit rating expert's thought process to arrive at the final decision. A flexible credit rating framework (CRF) has been designed to organize all the facts of the client in a hierarchical fashion. The neural networks provide self-learning capability to the CRF. The CRF can be customized to suit different business and industrial interests.
机译:在过去的几年中,在监管机构和股东的共同压力下,银行和金融机构对微型,中小型企业的信用风险评估一直是研究的活跃领域。信用评级评估是信用风险评估的重要组成部分,涉及金融,业务,行业和管理领域等风险参数。评估的数学模型是现代信用风险管理系统的核心。本文着重于使用模糊逻辑和神经网络技术来设计一种评估企业家信用度的方法。神经模糊逻辑方法考虑了信用评级专家的思维过程的细节,以得出最终决策。灵活的信用评级框架(CRF)旨在以分层方式组织客户的所有事实。神经网络为CRF提供自学习功能。可以定制CRF以适合不同的商业和行业利益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号