首页> 外文期刊>Expert systems with applications >Forecasting influenza epidemics in Hong Kong using Google search queries data: A new integrated approach
【24h】

Forecasting influenza epidemics in Hong Kong using Google search queries data: A new integrated approach

机译:使用Google搜索查询数据预测香港的流感流行病:一种新的综合方法

获取原文
获取原文并翻译 | 示例

摘要

Forecasting influenza epidemics has important practical implications. However, the performance of traditional methods adopting in Hong Kong influenza forecasting is limited due to its particularity. This paper proposes an integrated approach for Hong Kong influenza epidemics forecasting. The novelties of our approach mainly include: firstly, we adopt a model for Google search queries data collection and selection in Hong Kong to substitute Google Correlate. Secondly, we adopt the stacked autoencoder (SAE) to reduce the dimensionality of Google search queries data. Thirdly, we adopt a signal decomposition method named variational mode decomposition (VMD) to decompose the influenza data into modes with different frequencies, which can extract the characteristic. Fourthly, we use artificial neural networks (ANN) to forecast these modes of influenza epidemics extracted by VMD respectively, then these forecasts of each mode are added to generate the final forecasting results. From the perspective of forecasting accuracy and hypothesis tests, the empirical results show that our proposed integrated approach SAE-VMD-ANN significantly outperforms some other benchmark models both in the whole period and influenza season. The performance of our proposed model during the COVID-19 pandemic is checked too.
机译:预测流感流行病学具有重要的实际意义。然而,由于特殊性,传统方法的性能受到香港流感预测的限制。本文提出了香港流感流行病预测的综合方法。我们的方法的Noveltize主要包括:首先,我们采用谷歌搜索查询数据收集和选择的模型,以替代Google相关。其次,我们采用堆叠的AutoEncoder(SAE)来减少Google搜索查询数据的维度。第三,我们采用名为各种变化模式分解(VMD)的信号分解方法,以将流感数据分解为具有不同频率的模式,这可以提取特性。第四,我们使用人工神经网络(ANN)分别预测VMD提取的这些流感流行病模式,然后添加了这些模式的这些预测以产生最终的预测结果。从预测准确性和假设试验的角度来看,经验结果表明,我们建议的综合方法SAE-VMD-ANN在整个时期和流感季节中显着优于一些其他基准模型。考虑到在Covid-19大流行期间的拟议模型的表现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号