首页> 外文期刊>Expert systems with applications >Explaining dimensionality reduction results using Shapley values
【24h】

Explaining dimensionality reduction results using Shapley values

机译:使用福利值解释减少量度减少结果

获取原文
获取原文并翻译 | 示例

摘要

Dimensionality reduction (DR) techniques have been consistently supporting high-dimensional data analysis in various applications. Besides the patterns uncovered by these techniques, the interpretation of DR results based on each feature's contribution to the low-dimensional representation supports new finds through exploratory analysis. Current literature approaches designed to interpret DR techniques do not explain the features' contributions well since they focus only on the low-dimensional representation or do not consider the relationship among features. This paper presents ClusterShapley to address these problems, using Shapley values to generate explanations of dimensionality reduction techniques and interpret these algorithms using a cluster-oriented analysis. ClusterShapley explains the formation of clusters and the meaning of their relationship, which is useful for exploratory data analysis in various domains. We propose novel visualization techniques to guide the interpretation of features' contributions on clustering formation and validate our methodology through case studies of publicly available datasets. The results demonstrate our approach's interpretability and analysis power to generate insights about pathologies and patients in different conditions using DR results.
机译:维度减少(DR)技术一直在各种应用中一致地支持高维数据分析。除了这些技术揭示的模式之外,基于每个特征对低维表示的贡献的解释还通过探索性分析来支持新发现。目前旨在解释DR技术的文献方法不会解释功能的贡献良好,因为它们仅关注低维表示,或者不考虑特征之间的关系。本文呈现了Clustershapley来解决这些问题,使用福利值来生成维度降低技术的解释,并使用面向簇的分析来解释这些算法。 Clustershapley解释了集群的形成和其关系的含义,这对于各个领域的探索性数据分析有用。我们提出了新颖的可视化技术,以指导对集群形成对聚类形成的贡献的解释,并通过公开可用数据集的案例研究来验证我们的方法。结果证明了我们的方法的可解释性和分析能力,以利用DR结果在不同条件下产生对病理学和患者的洞察力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号