首页> 外文期刊>Expert systems with applications >Performance analysis of all-optical logical gate using artificial neural network
【24h】

Performance analysis of all-optical logical gate using artificial neural network

机译:用人工神经网络对全光逻辑门的性能分析

获取原文
获取原文并翻译 | 示例

摘要

Photonic digital gates are the next generation of all optical digital devices. Exclusive OR gate (XOR) is one of the important and applicable components in the next generation of all-optical networks. Generally, the optical digital gates are simulated by complex and time- consuming numerical methods like FDTD. Prediction of the accurate output (the state of 0 or 1) is a key parameter in the digital gates. Photonic devices modeling by artificial neural networks (ANNs) will be introduced as a flexible, suitable and precise modeling alternative approach instead of numerical simulations. In this paper, performance of a 3-input all-optical exclusive OR gate (XOR) has been modeled using artificial neural networks. We discuss in detail that trained ANNs can be used as a fast modeling method for optical digital gates, with high accuracy. Here, we proposed to develop a modeling system for alloptical 3-input XOR gates based on multilayer perceptron (MLP) and radial basis function (RBF) neural networks. Therefore, the proposed neural networks are trained by data arising from simulations by numerical methods. The dataset is the power lasers of all possible logical conditions used to train neural networks. The full data set is split in 90/10 for the train and test data. To understand the ANN methods' performance, the figures of the predicted results of all optical XOR gate are plotted and compared. Also, the error indices like mean square error (MSE) and Relative Square Error (RSE) are calculated for the test data to evaluate the performance of neural network models on the prediction of all optical XOR gate output. The correlation between the modeled data by neural networks and simulated data by numerical methods are established by Correlation Coefficient (R-2) parameter too. According to the comparison of both neural networks algorithms, good results are reached which lead to an effective technique. The effect of training parameters of ANN' models, like number of hidden layers, number neurons in the hidden layers, number of epochs, learning rate value, spread of gaussian functions on the prediction results and errors are compared and analyzed. The aim is to set the optimum parameters to prevent from complexity of the neutral network. The best results for RBF NN is the value of 1 for spread of Gaussian function and 90 hidden neurons that lead to MSE, RSE and R-2 values of 4.0837 x 10(-4), 0.0114, and 0.9888 respectively. The optimum structure of MLP NN is 2 hidden layers with 12 and 8 neurons (5 12 8 1) by training with 65 epochs. The activation function for hidden and output layers are chosen logsigmoid, logsigmoid and purelin respectively. The calculated MSE, RSE, and R-2 for the best MLP NN structure has been 7.5 x 10(-10) 0.000133, and 0.9999, respectively, which confirms the high accuracy of the mentioned neural network model.Even though the two mentioned neural networks models can be used to model all-optical 3-input XOR gates appropriately, results show that MLP NN using the most relevant features achieved the best results and better estimates. Finally, the implementation of the optical logic gates with neural network was illustrated for the future optical integrated circuits.
机译:光子数字门是所有光学数字设备的下一代。独家或门(XOR)是下一代全光网络中的重要且适用的组件之一。通常,光学数字栅极通过像FDTD这样的复杂和耗时的数值方法来模拟。预测准确输出(0或1的状态)是数字门中的关键参数。通过人工神经网络(ANNS)建模的光子器件将被引入灵活,合适,精确的建模替代方法,而不是数值模拟。在本文中,使用人工神经网络建模了3输入全光专用或门(XOR)的性能。我们详细讨论了培训的ANNS可以用作光学数字门的快速建模方法,具有高精度。这里,我们建议基于多层的Perceptron(MLP)和径向基函数(RBF)神经网络来开发用于Alloptical 3输入XOR门的建模系统。因此,所提出的神经网络通过数值方法从模拟引起的数据训练。数据集是用于训练神经网络的所有可能逻辑条件的电源激光器。完整的数据集是在90/10中拆分为列车和测试数据。为了了解ANN方法的性能,绘制并比较所有光学XOR门的预测结果的图。此外,计算例如均方误差(MSE)和相对平方误差(RSE)的错误指数,用于测试数据,以评估神经网络模型对所有光学XOR栅极输出的预测的性能。通过相关系数(R-2)参数建立了通过数值方法建立了神经网络和模拟数据的模拟数据之间的相关性。根据神经网络算法的比较,达到了良好的结果,这导致了有效的技术。 ANN'模型的训练参数的影响,如隐藏层的数量,隐藏层中的数神经元,纪念碑,学习率值,高斯函数的扩散,并分析了。目的是设定最佳参数,以防止中立网络的复杂性。 RBF NN的最佳结果是高斯函数和90个隐形神经元的值为1,导致MSE,RSE和R-2分别为4.0837×10(-4),0.0114和0.9888。 MLP NN的最佳结构是2层隐藏层,通过用65时次训练,具有12和8个神经元(5 12 8 1)。隐藏和输出层的激活函数分别选择Logsigmoid,Logsigmoid和Purelin。用于最佳MLP NN结构的计算的MSE,RSE和R-2分别为7.5×10( - 10)0.000133和0.9999,这证实了所提述神经网络模型的高精度。即使这两个神经网络网络模型可用于适当地模拟全光3输入XOR门,结果表明MLP NN使用最相关的特征实现了最佳结果和更好的估计。最后,为未来光学集成电路示出了具有神经网络的光学逻辑门的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号