首页> 外文期刊>Expert systems with applications >An integrated probabilistic graphic model and FMEA approach to identify product defects from social media data
【24h】

An integrated probabilistic graphic model and FMEA approach to identify product defects from social media data

机译:一种综合的概率图形模型和FMEA方法来识别社交媒体数据的产品缺陷

获取原文
获取原文并翻译 | 示例

摘要

Recently, the explosive increase in social media data enables manufacturers to collect product defect information promptly. Extant literature gathers defect information like defective components or defect symptoms without distinguishing defect-related (DR) texts from defect-unrelated (DUR) texts and thus makes defects discussed by few texts buried in enormous DUR texts. Moreover, existing studies do not consider the defect severity which is valuable and important for manufacturers to make remedial decisions. To bridge these research gaps, we propose a novel approach that integrates the probabilistic graphic model named Product Defect Identification and Analysis Model (PDIAM) with Failure Mode and Effect Analysis (FMEA) to derive product defect information from social media data. Comparing to extant studies, PDIAM identifies DR texts and then extracts defect information from these texts. And PDIAM provides more defect information than previous researches. Besides, we further analyze defect severity with the combination of FMEA and PDIAM which alleviates the inherent subjectivity brought by expert evaluation in the traditional FMEA. A case study in the automobile industry proves the predominant performance of our approach and great potential in defect management.
机译:最近,社交媒体数据的爆炸性增加使制造商能够及时收集产品缺陷信息。现有的文献收集缺陷信息,如有缺陷的组件或缺陷症状,而不区分从缺陷无关(DUR)文本的缺陷相关(DR)文本,因此在庞大的DUR文本中掩埋的少数文本讨论了缺陷。此外,现有研究不考虑缺陷严重程度,这对制造商来说是有价值,重要的制造商做出补救决策。为了弥合这些研究差距,我们提出了一种新的方法,将命名的概率图形模型与故障模式和效果分析(FMEA)集成,以从社交媒体数据中获得产品缺陷信息。与现存研究相比,PDIAM识别DR文本,然后从这些文本中提取缺陷信息。而PDIAM提供比以前的研究更多的缺陷信息。此外,我们进一步分析了FMEA和PDIAM的组合,减轻了传统FMEA专家评估所带来的固有主体性的缺陷严重程度。汽车行业的案例研究证明了我们的方法的主要性能和缺陷管理的巨大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号