首页> 外文期刊>Expert systems with applications >Automatic modulation classification using different neural network and PCA combinations
【24h】

Automatic modulation classification using different neural network and PCA combinations

机译:自动调制分类使用不同的神经网络和PCA组合

获取原文
获取原文并翻译 | 示例

摘要

This paper highlights one of the most promising research directions for automatic modulation recognition algorithms, although it does not provide a final solution. We study the design of a high-precision classifier for recognizing PSK, QAM and DVB-S2 APSK modulation signals. First, an efficient pattern recognition model that includes three main modules for feature extraction, feature optimization and classification is presented. The feature extraction module extracts the most useful combinations of up to six high-order cumulants that embed sixth-order moments and uses logarithmic function properties to improve the distribution curve of the six-order cumulants. To the best of our knowledge, this is the first time that these combinations and the improved feature criteria have been applied in this area. The optimizer module selects optimal features via principal component analysis (PCA). Then, in the classifier module, we study two important supervised neural network classifiers (i.e., multilayer perceptron (MLP)- and radial basis function (RBF)-based classifiers). Through an experiment, we determine the best classifier for recognizing the considered modulations. Then, we propose an RBF-PCA combined recognition system in which an optimization module is added to enhance the overall classifier performance. This module optimizes the classifier performance by searching for the best subset of features to use as the classifier input. The simulation results illustrate that the RBF-PCA classifier combination achieves high recognition accuracy even at a low signal-to-noise ratio (SNR) and with limited training samples.
机译:本文突出了自动调制识别算法最有前景的研究方向之一,尽管它不提供最终解决方案。我们研究了高精度分类器的设计,用于识别PSK,QAM和DVB-S2 APSK调制信号。首先,提出了一种有效的模式识别模型,包括用于特征提取的三个主模块,特征优化和分类。该特征提取模块提取最多六个高阶累积剂的最有用组合,可嵌入第六次阶段,并使用对数函数特性来改善六阶累积剂的分布曲线。据我们所知,这是第一次在这一领域应用了这些组合和改进的特征标准。优化器模块通过主成分分析(PCA)选择最佳功能。然后,在分类器模块中,我们研究了两个重要的监督神经网络分类器(即,多层的Perceptron(MLP)和径向基函数(RBF)的分类器)。通过实验,我们确定最佳分类器,用于识别所考虑的调制。然后,我们提出了一个RBF-PCA组合识别系统,其中添加了优化模块以增强整体分类器性能。该模块通过搜索用作分类器输入的最佳功能子集来优化分类器性能。仿真结果表明,即使以低信噪比(SNR)和有限的训练样本,RBF-PCA分类器组合也能实现高识别精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号