首页> 外文期刊>Expert systems with applications >Data-driven early fault diagnostic methodology of permanent magnet synchronous motor
【24h】

Data-driven early fault diagnostic methodology of permanent magnet synchronous motor

机译:数据驱动永磁同步电动机的早期故障诊断方法

获取原文
获取原文并翻译 | 示例

摘要

Permanent magnet synchronous motor (PMSM) is one of the common core power components in modern industrial systems. Early fault diagnosis can avoid major accidents and plan maintenance in advance. However, the features of early faults are weak, and the symptoms are not obvious. Meanwhile, the fault signal is often overwhelmed by noise. Accordingly, fault diagnosis for early faults is difficult, and the diagnostic accuracy is generally low. A Bayesian-network-based data-driven early fault diagnostic methodology of PMSM is proposed with vibration and acoustic emission data. The wavelet threshold denoising and minimum entropy deconvolution methods are used to improve the signal-to-noise ratio. The complementary ensemble empirical mode decomposition method is used to extract signal eigenvalues, and Bayesian networks are applied to identify the early, middle, and permanent faults. Experimental data carried out with Tyco ST8N80P100V22E medium PMSM are used to train the fault diagnostic model and validate the proposed fault diagnostic methodology. Result shows that the accuracy for early faults is more than 90% when acoustic emission signal is used, and it is higher than the accuracy with vibration signal. The influence of load on diagnostic accuracy is also investigated, and it indicates that the accuracy with acoustic emission signal is higher than that with vibration signal under different loads.
机译:永磁同步电机(PMSM)是现代工业系统中的常见核心电力元件之一。早期故障诊断可以避免主要事故和计划预先维护。然而,早期断层的特征薄弱,症状并不明显。同时,故障信号通常被噪声所淹没。因此,困难的故障诊断是困难的,诊断精度通常很低。提出了一种基于贝叶斯网络的数据驱动的PMSM的早期故障诊断方法,采用振动和声发射数据。小波阈值去噪和最小熵卷积方法用于提高信噪比。互补集合经验模式分解方法用于提取信号特征值,并应用贝叶斯网络来识别早期,中间和永久性故障。使用Tyco ST8N80P100V22E培养基PMSM进行的实验数据用于训练故障诊断模型并验证所提出的故障诊断方法。结果表明,当使用声发射信号时,早期断层的准确性大于90%,并且它高于振动信号的精度。还研究了负荷对诊断精度的影响,表明具有声发射信号的精度高于不同负载下的振动信号的精度。

著录项

  • 来源
    《Expert systems with applications》 |2021年第9期|115000.1-115000.12|共12页
  • 作者单位

    China Univ Petr Natl Engn Lab Offshore Geophys & Explorat Equipme Qingdao 266580 Shandong Peoples R China|China Univ Petr Coll Mech & Elect Engn Qingdao 266580 Shandong Peoples R China;

    China Univ Petr Natl Engn Lab Offshore Geophys & Explorat Equipme Qingdao 266580 Shandong Peoples R China|China Univ Petr Coll Mech & Elect Engn Qingdao 266580 Shandong Peoples R China|CRRC Qingdao Sifang Rolling Stock Res Inst Co Ltd Qingdao 266031 Peoples R China;

    China Univ Petr Natl Engn Lab Offshore Geophys & Explorat Equipme Qingdao 266580 Shandong Peoples R China|China Univ Petr Coll Mech & Elect Engn Qingdao 266580 Shandong Peoples R China;

    China Univ Petr Natl Engn Lab Offshore Geophys & Explorat Equipme Qingdao 266580 Shandong Peoples R China|China Univ Petr Coll Mech & Elect Engn Qingdao 266580 Shandong Peoples R China;

    China Univ Petr Natl Engn Lab Offshore Geophys & Explorat Equipme Qingdao 266580 Shandong Peoples R China|China Univ Petr Coll Mech & Elect Engn Qingdao 266580 Shandong Peoples R China;

    China Univ Petr Natl Engn Lab Offshore Geophys & Explorat Equipme Qingdao 266580 Shandong Peoples R China|China Univ Petr Coll Mech & Elect Engn Qingdao 266580 Shandong Peoples R China;

    China Univ Petr Natl Engn Lab Offshore Geophys & Explorat Equipme Qingdao 266580 Shandong Peoples R China|China Univ Petr Coll Mech & Elect Engn Qingdao 266580 Shandong Peoples R China;

    China Univ Petr Natl Engn Lab Offshore Geophys & Explorat Equipme Qingdao 266580 Shandong Peoples R China|China Univ Petr Coll Mech & Elect Engn Qingdao 266580 Shandong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    PMSM; Early faults; Fault diagnosis; Bayesian networks;

    机译:PMSM;早期断层;故障诊断;贝叶斯网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号