首页> 外文期刊>Expert systems with applications >Providing music service in Ambient Intelligence: experiments with gym users
【24h】

Providing music service in Ambient Intelligence: experiments with gym users

机译:在环境智能下提供音乐服务:健身器用户的实验

获取原文
获取原文并翻译 | 示例

摘要

Ambient Intelligence (AmI) is an interdisciplinary research area of ICT which has evolved since the 90s, taking great advantage from the advent of the Internet of Things (IoT). AmI creates, by using Artificial Intelligence (AI), an intelligent ecosystem in which computers, sensors, lighting, music, personal devices, and distributed services, work together to improve the user experience through the support of natural and intuitive user interfaces. Nowadays, AmI is used in various contexts, e.g., for building smart homes and smart cities, providing healthcare, and creating an adequate atmosphere in retail and public environments.In this paper, we propose a novel AmI system for gym environments, named Gym Intelligence, able to provide adequate music atmosphere, according to the users & rsquo; physical effort during the training. The music is taken from Spotify and is classified according to some music features, as provided by Spotify itself. The system is based on a multi-agent computational intelligence model built on two main components: (i) machine learning methods that forecast appropriate values for the Spotify music features, and (ii) a multi-objective dynamic genetic algorithm that selects a specific Spotify music track, according to such values. Gym Intelligence is built by sensing the ambient with a minimal, low-cost, and non-intrusive set of sensors, and it has been designed considering the outcome of a preliminary analysis in real gyms, involving real users. We have considered well-known regression methods and we have validated them using a collected data (i) about the users & rsquo; physical effort, through the sensors, and (ii) about the users & rsquo; music preferences, through an Android app that the users have used during the training. Among the regression methods considered, the one that provided the best results is the Random Forest, which predicted Spotify music features with a mean absolute error of 0.02 and a root mean squared error of 0.05. We have implemented Gym Intelligence and deployed it in five real gyms. We have evaluated it conducting several experiments. The experiments show how, with the help of Gym Intelligence, the users & rsquo; satisfaction about the provided background music, rose from 3.05 to 4.91 (on a scale from 1 to 5, where 5 is the maximum score).
机译:环境情报(AMI)是ICT的跨学科研究领域,它自90年代以来已经发展,从事互联网的出现来说,从事事物(物联网)的出现。 AMI通过使用人工智能(AI),智能生态系统,其中计算机,传感器,照明,音乐,个人设备和分布式服务,共同努力,通过支持自然和直观的用户界面来改善用户体验。如今,AMI被用于各种背景,例如,用于建立智能家庭和智能城市,提供医疗保健,并在零售和公共环境中创造充足的氛围。在本文中,我们为健身房环境提出了一个新的AMI系统,名为FAME情报根据用户&rsquo,能够提供足够的音乐氛围;培训期间的体力劳动。音乐取自Spotify,并根据一些音乐功能进行分类,如Spotify本身所提供的。该系统基于两个主要组件内置的多代理计算智能模型:(i)机器学习方法,预测Spotify音乐功能的适当值,以及(ii)一种选择特定Spotify的多目标动态遗传算法音乐曲目,根据这样的价值观。通过用最小,低成本和非侵入式传感器传感环境,建立了健身房智能,并设计了考虑真实健身房初步分析的结果,涉及真正的用户。我们已经考虑了众所周知的回归方法,我们已经使用收集的数据(i)验证了关于用户和rsquo的数据;通过传感器和(ii)关于用户和rsquo的体力努力;音乐首选项,通过用户在培训期间使用的Android应用程序。在考虑的回归方法中,提供了最佳结果的是随机林,其预测了Spotify音乐特征,其平均绝对误差为0.02和均方根误差为0.05。我们已经实施了健身房智能,并在五个真实的健身房部署了它。我们已经评估了它进行了几个实验。实验表明如何在健身情报,用户和rsquo的帮助下;对提供的背景音乐的满意度,从3.05升至4.91(从1到5的等级,其中5个是最高分数)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号