首页> 外文期刊>Expert systems with applications >A continuous-state cellular automata algorithm for global optimization
【24h】

A continuous-state cellular automata algorithm for global optimization

机译:一种用于全局优化的连续状态蜂窝自动机算法

获取原文
获取原文并翻译 | 示例

摘要

Cellular automata are capable of developing complex behaviors based on simple local interactions between their elements. Some of these characteristics have been used to propose and improve metaheuristics for global optimization; however, the properties offered by the evolution rules in cellular automata have not yet been used directly in optimization tasks. Inspired by the complexity that various evolution rules of cellular automata can offer, the continuous-state cellular automata algorithm is proposed. In this way, the algorithm takes advantage of different evolution rules to maintain a balance that maximizes the exploration and exploitation properties in each iteration. The efficiency of the algorithm is proven with 48 test problems widely used in the literature, 4 engineering applications that were also used in recent literature, and the design of adaptive infinite-impulse response filters, with the reference functions of 10 full-order filters being tested. The numerical results prove its competitiveness in comparison with state-of-the-art algorithms. The source codes of the proposed algorithm are publicly available at https://github.com/juanseck/CCAA.git.
机译:蜂窝自动机能够基于其元素之间的简单局部相互作用开发复杂的行为。这些特征中的一些已经用于提出和改善全球优化的成分学;但是,蜂窝自动机中的进化规则提供的属性尚未直接用于优化任务。通过蜂窝自动机可以提供的各种演化规则可以提供的复杂性的灵感,提出了连续状态蜂窝自动机算法。通过这种方式,该算法利用不同的演进规则来维持最大化每次迭代中的勘探和剥削属性的平衡。经过验证的算法的效率,在文献中广泛应用于48个测试问题,4个工程应用,该应用程序也用于最近的文献,以及适应性无限脉冲响应过滤器的设计,具有10个全阶滤波器的参考功能测试。与最先进的算法相比,数值结果证明了其竞争力。所提出的算法的源代码在https://github.com/juanseck/ccaa.git上公开可用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号