首页> 外文期刊>Expert systems with applications >Input data selection for daily traffic flow forecasting through contextual mining and intra-day pattern recognition
【24h】

Input data selection for daily traffic flow forecasting through contextual mining and intra-day pattern recognition

机译:通过上下文挖掘和日内模式识别进行日常流量预测的输入数据选择

获取原文
获取原文并翻译 | 示例

摘要

There is a large amount of literature about the traffic flow forecasting and most existing studies focus on prediction algorithm itself. However, how to select the appropriate historical data as input is also vital for the prediction task, while such studies are limited. This paper aims to cover this gap and proposes a method to select the appropriate historical data for daily traffic flow forecasting. The main idea is that some contextual factors including season, day of the week, weather, and holiday, influence the daily traffic flow pattern, and we select historical days with the similar pattern to the target day as the training data for prediction algorithm. The method consists of three steps: first, the similarities for traffic flow series between any two days are measured by Dynamic Time Warping, and then historical days are divided into different groups using a density-peak clustering algorithm; Second, the contextual factors are sorted by Elitist Non-dominated Sorting Genetic Algorithm (NSGAII) using the clustering results, and their degrees of importance are transformed into weights in order to better measure the degrees of similarity between the clustered groups of days and the target day; third, one clustered group of historical data is selected based on the weighted degree of similarity and this group is used as the input for the prediction algorithm. At last, the benefits of the new method are discussed based on a Seattle case study, which illustrates that the proposed approach has higher prediction accuracy and stability across various prediction algorithms.
机译:有大量关于交通流预测文献和大多数现有的研究集中于预测算法本身。然而,如何选择合适的历史数据作为输入也是预测的任务是至关重要的,而这样的研究是有限的。本文旨在覆盖这个缺口,并建议选择每天的交通流预测的相应历史数据的方法。其主要思想是,一些环境因素,包括季节,星期,天气和假期的一天,影响了日常的交通流模式,我们选择用类似的模式,以目标日当天作为预测算法的训练数据的历史天。该方法包括三个步骤:首先,对于任何两个天之间的业务流系列的相似性是通过动态时间规整测量,然后历史天被分成使用密度峰值聚类算法不同的基团;二,环境因素是由精英保留非支配排序遗传算法(NSGAII)使用聚类结果排序,其重要程度的转化为权重,以更好地衡量天的群集组和目标之间的相似度日;第三,基于相似性的加权程度被选择的历史数据的一个聚集组,将该组被用作输入的预测算法。最后,新方法的好处讨论了基于西雅图的案例,这说明,该方法具有在不同的预测算法更高的预测精度和稳定性。

著录项

  • 来源
    《Expert systems with applications》 |2021年第8期|114902.1-114902.12|共12页
  • 作者单位

    Zhejiang Univ Inst Marine Informat Sci & Technol Yuhangtang Rd 866 Hangzhou 310058 Peoples R China|Artificial Intelligence Res Ctr Pengcheng Lab Xingke St 2 Shenzhen 518055 Peoples R China;

    Zhejiang Univ Inst Marine Informat Sci & Technol Yuhangtang Rd 866 Hangzhou 310058 Peoples R China;

    Zhejiang Univ Inst Marine Informat Sci & Technol Yuhangtang Rd 866 Hangzhou 310058 Peoples R China|Artificial Intelligence Res Ctr Pengcheng Lab Xingke St 2 Shenzhen 518055 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Traffic flow forecasting; Input data selection; Clustering; Pattern recognition; NSGA-II;

    机译:交通流预测;输入数据选择;聚类;模式识别;NSGA-II;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号