首页> 外文期刊>Expert systems with applications >Optimizing electric vehicle routing problems with mixed backhauls and recharging strategies in multi-dimensional representation network
【24h】

Optimizing electric vehicle routing problems with mixed backhauls and recharging strategies in multi-dimensional representation network

机译:多维代表网络中混合后钟和充电策略优化电动车辆路由问题

获取原文
获取原文并翻译 | 示例

摘要

Electric vehicles are environmental transportation modes that are widely applied in green logistics systems. To guarantee the energy efficiency, the impacts of customer service modes and recharging strategies need to be integrated into the optimization of electric logistics resource. This paper proposes an electric vehicle routing problem with mixed backhauls, time windows, and recharging strategies (EVRPMBTW-RS), minimizing the total travel cost with sophisticated constraints on the time-dependent pickup and delivery requests, limited recharging station capacity, and battery remaining capacity of electric vehicles. Mixed service sequences of linehaul and backhaul customers is allocated for the routing planning, with the synchronous optimization of recharging strategies including the selection of recharging stations and determination of recharging time. A time-discretized multi-commodity network flow model is constructed based on an extended space?time-state modeling framework, which is formulated as a quadratic 0?1 programming model by using the augmented Lagrangian relaxation technique. After the dualization and linearized transformation, we decompose the model into a sequence of leastcost path subproblems based on the alternating direction multiplier method (ADMM). The subproblems are alternately minimized and solved using the time-dependent forward dynamic programming algorithm. The solution quality can be guaranteed through calculating the optimality gap between the best lower bound and upper bound for each iteration. The proposed solution approach is examined on examples of a simple 7-node network and real-world Yizhuang road network. This paper provides a theoretical foundation for the route optimization method of electric logistics vehicles, and contributes to improve the operational efficiency of electric logistics systems.
机译:电动车是在绿色物流系统中广泛应用的环保模式。为保证能源效率,客户服务模式和充电策略的影响需要纳入电气物流资源的优化。本文提出了一种电动车辆路由与混合后牙,时间窗口和充电策略(EVRPMBTW-RS)的电动车辆路由问题,最大限度地减少了在时间依赖的拾取和交付请求,限量充电站容量和剩余电池的复杂约束的总旅行成本电动车的能力。线路和回程客户的混合服务序列为路由规划分配,具有同步优化对充电策略,包括选择充电站和再充电时间的测定。基于扩展空间构造的时间离散化的多商品网络流模型?时间状态建模框架,通过使用增强拉格朗日放松技术将其作为二次0?1编程模型配制。在两化和线性化转换之后,我们基于交替方向乘法器方法(ADMM)将模型分解为最小路径子问题的序列。使用时间依赖的前向动态编程算法交替最小化和解决子问题。通过计算每次迭代的最佳下限和上限之间的最佳差距,可以保证解决方案质量。拟议的解决方案方法是在一个简单的7节点网络和现实世界义庄路网的示例上进行了研究。本文为电动物流车辆的路线优化方法提供了理论基础,有助于提高电气物流系统的运行效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号