首页> 外文期刊>Expert systems with applications >A combinatorial evolutionary algorithm for unrelated parallel machine scheduling problem with sequence and machine-dependent setup times, limited worker resources and learning effect
【24h】

A combinatorial evolutionary algorithm for unrelated parallel machine scheduling problem with sequence and machine-dependent setup times, limited worker resources and learning effect

机译:序列和机器依赖的设置时间,有限的工人资源和学习效果的无关并行机器调度问题的组合进化算法

获取原文
获取原文并翻译 | 示例

摘要

The existing papers on unrelated parallel machine scheduling problem with sequence and machine-dependent setup times (UPMSP-SMDST) ignore the worker resources and learning effect. Given the influence and potential of human factors and learning effect in real production systems to improve production efficiency and decrease production cost, we propose a UPMSP-SMDST with limited worker resources and learning effect (NUPMSP). In the NUPMSP, the workers have learning ability and are categorized to different skill levels, i.e., a worker's skill level for a machine is changing with his accumulating operation times on the same machine. A combinatorial evolutionary algorithm (CEA) which integrates a list scheduling (LS) heuristic, the shortest setup time first (SST) rule and an earliest completion time first (ECT) rule is presented to solve the NUPMSP. In the experimental phase, 72 benchmark instances of NUPMSP are constructed to test the performance of the CEA and facilitate future study. The Taguchi method is used to obtain the best combination of key parameters of the CEA. The effectiveness of the LS, SST and ECT is verified based on 15 benchmark instances. Extensive experiments conducted to compare the CEA with some well-known algorithms confirm that the proposed CEA is superior to these algorithms in terms of solving accuracy and efficiency.
机译:具有序列和机器相关的设置时间(UPMSP-SMDST)的无关并行机调度问题的现有论文忽略了工人资源和学习效果。鉴于人类因素的影响和潜力和实际生产系统中的学习效果,提高生产效率和降低生产成本,我们提出了一个有限的工人资源和学习效果(NUPMSP)的UPMSP-SMDST。在NUPMSP中,工人具有学习能力,并分为不同的技能水平,即,机器的工人的技能水平正在同一台机器上的累积操作时间改变。组合进化算法(CEA)集成了列表调度(LS)启发式,最短设置时间首先(SST)规则和最早完成时间首先(ECT)规则以解决NUPMSP。在实验阶段,建立了72个NuPMSP的基准实例,以测试CEA的性能并促进未来的研究。 TAGUCHI方法用于获得CEA的关键参数的最佳组合。基于15个基准实例验证了LS,SST和ECT的有效性。进行了广泛的实验,以将CEA与一些众所周知的算法进行比较,确认所提出的CEA在求解精度和效率方面优于这些算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号