首页> 外文期刊>Expert systems with applications >An efficient algorithm for unique class association rule mining
【24h】

An efficient algorithm for unique class association rule mining

机译:一种高效的唯一类关联规则挖掘算法

获取原文
获取原文并翻译 | 示例

摘要

Association rule mining is one of the main means in Knowledge discovery and Machine learning. Such kind of rules present knowledge of interrelations among items in a dataset. Class Association Rules (CARs) are a subset of association rules which are always mined using labeled datasets. Simply, a typical CAR has an itemset that is associated to a class label. Mining CARs is vital for construction of pattern or rule-based classification models and has received recently increasing research interest. In this work, a complete efficient but not exhaustive CAR mining algorithm (UniqAR) is introduced. UniqAR generates always and only 100% accurate CARs which are called unique association rules using two rule search hypothesis of Subsumption and Nonsense to find unique itemsets in order to generate the Unique CARs. Unlike alternatives of CAR mining algorithms, UniqAR mined association rules aren't based on itemset frequency or item selectivity. It can generate both frequent and rare association rules. No preferences of support, coverage, or item participant in itemsets are required to be provided for the proposed mining process. The main contribution of this work to CARs' state of the art is describing unique itemsets and class association rules and providing an efficient mining process for them. Unlike the other unique rule mining alternatives in the literature, the proposed novel mining process depends on a complete but not exhaustive search that employs rules inter-relations. UniqAR has been modeled with computational analysis and extended evaluation. It is shown that UniqAR can extract all unique itemsets for unique association mining with no need to setup any user preferences, template or any constraints. Moreover, it describes accurately the effects of different dataset criteria like number of attributes/features, feature values, cases, and class labels on UniqAR unique itemset extraction mining process in an efficient way that avoids a huge number of itemsets/cases comparisons. Results have shown that the proposed UniqAR algorithm is feasible and promising.
机译:协会规则挖掘是知识发现和机器学习的主要手段之一。这种规则存在对数据集中项目之间的相互关系的知识。类关联规则(CARS)是关联规则的子集,这些规则总是使用标记的数据集挖掘。简单地,典型的汽车具有与类标签相关联的项目集。采矿汽车对模式或规则的分类模型构建至关重要,最近收到了越来越多的研究兴趣。在这项工作中,介绍了完整的高效但不是穷举的汽车挖掘算法(UNIQAR)。 UNIQAR始终生成,只有100%的准确性汽车,这些汽车被称为唯一的关​​联规则,使用两个规则搜索的归档和废话来查找唯一的项目集,以便生成独特的汽车。与汽车挖掘算法的替代方案不同,UNIQAR挖掘关联规则不是基于项目集频率或项目选择性。它可以生成频繁和罕见的关联规则。对于拟议的采矿过程,需要提供符合项目集的支持,覆盖范围或项目参与者的偏好。这项工作对汽车的主要贡献是艺术品的唯一项目集和班级关联规则,并为他们提供有效的采矿过程。与文献中的其他独特的规则挖掘替代品不同,所提出的新型采矿过程取决于一个完整但不尽的搜索,这些搜索采用规则间关系。 UNIQAR已采用计算分析和扩展评估建模。结果表明,Uniqar可以为唯一协会挖掘提取所有唯一项集,无需设置任何用户首选项,模板或任何约束。此外,它可以准确地描述不同数据集标准的影响,如uniqar唯一项目集提取挖掘过程中的属性/特征,特征,案例和类标签,以一种有效的方式,以避免大量的项目集/案例比较。结果表明,所提出的uniqar算法是可行和有前途的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号