首页> 外文期刊>Expert systems with applications >Point of interest recommendations based on the anchoring effect in location-based social network services
【24h】

Point of interest recommendations based on the anchoring effect in location-based social network services

机译:基于基于位置的社交网络服务中的锚定效应的兴趣点

获取原文
获取原文并翻译 | 示例

摘要

A point of interest (POI) recommender system (RS) is one of the representative research areas based on the location-based social network (LBSN). Most POI RS studies utilized various implicit information or social information to improve recommendation accuracy. However, majority of these studies overlooked the importance of users' initial check-in information. Users are affected by their first input data in online services, and this phenomenon is called the anchoring effect. In POI RSs, few studies have analyzed the association with the anchoring effect while other RS domains already verified this effect. In particular, a research area, including POI RS, that focuses on the importance of the initial input does not exist. In this paper, we propose a latent Dirichlet allocation (LDA) model based on the anchoring effect for POI RS. This model emphasizes the importance of initial check-in data and is called the anchor-LDA. Experimental results showed that the anchor-LDA outperformed existing LDA-based POI recommender algorithms. Furthermore, we validated the importance of initial check-in information on the LBSN.
机译:兴趣点(POI)推荐系统(RS)是基于基于位置的社交网络(LBSN)的代表性研究领域之一。大多数POI RS研究利用各种隐式信息或社会信息来提高推荐准确性。然而,这些研究中的大部分都忽视了用户初始登记信息的重要性。用户受到在线服务中的第一个输入数据的影响,这种现象称为锚定效果。在POI RSS中,很少有研究已经分析了与锚定效应的关系,而其他RS域已经验证了这种效果。特别是,包括POI RS的研究区域,专注于初始输入的重要性。在本文中,我们提出了一种基于POI Rs的锚固效果的潜在Dirichlet分配(LDA)模型。该模型强调初始登记数据的重要性,并称为Anchor-LDA。实验结果表明,锚-LDA优于现有的基于LDA的POI推荐算法。此外,我们验证了初始登记入住LBSN信息的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号