首页> 外文期刊>Expert systems with applications >A bi-objective simulation-based optimization algorithm for redundancy allocation problem in series-parallel systems
【24h】

A bi-objective simulation-based optimization algorithm for redundancy allocation problem in series-parallel systems

机译:基于双目标仿真的串联系统冗余分配问题优化算法

获取原文
获取原文并翻译 | 示例

摘要

The present study proposes a bi-objective simulation-based optimization model applicable to the redundancy allocation problem (RAP) with heterogeneous components for the objective functions of system reliability maximization and system cost minimization. Proposed RAP identifies the optimal component types, the redundancy level, and the redundancy strategy, comprising active, cold-standby, mixed, or K-mixed configurations, with imperfect switching. Based on the stochastic nature and NP-hard complexity of the problem, except for the active redundancy strategy, there is no analytical closed-form method for accurately assessing system reliability. Hence, earlier studies carried out system reliability optimization by single-stage stochastic techniques that estimate the lower Lagrangian function bound. This limitation adds to the design cost and hinders greater system reliability. Generally, one cannot analytically evaluate system reliability. The present study employs simulation sampling in order to make efficient and unbiased reliability estimates. 4Dscript interpreting programming is utilized to design the computerized simulation model. Since RAP has a combinatorial nature, the present study exploits the controlled elitist non-dominated sorting genetic algorithm (NSGA-II) to obtain Paretooptimal fronts with properly-distributed optimal points. Various benchmark solutions of the literature are investigated to validate the developed model and evaluate the proposed NSGA-II method efficiency. The findings revealed satisfactory performance in system reliability enhancement and total system cost reduction compared to the earlier methods.
机译:本研究提出了一种基于双目标仿真的优化模型,适用于具有异构组件的冗余分配问题(RAP),用于实现系统可靠性最大化和系统成本最小化的目标功能。建议说唱识别最佳组件类型,冗余级别和冗余策略,包括有源,冷备,混合或k混合配置,具有不完美的切换。基于该问题的随机性质和NP - 硬复杂性,除了主动冗余策略外,没有分析闭合方法,可准确评估系统可靠性。因此,早期的研究通过单级随机技术进行了系统可靠性优化,估计了较低的拉格朗日函数绑定。这种限制增加了设计成本,并且阻碍了更大的系统可靠性。通常,人们不能分析系统可靠性。本研究采用仿真采样,以便高效和无偏的可靠性估计。 4DScript解释编程用于设计计算机化仿真模型。由于RAP具有组合性质,本研究利用受控的Elitist非主导的分类遗传算法(NSGA-II)以获得具有适当分布的最佳点的床面前线。研究了文献的各种基准解决方案,以验证开发的模型并评估所提出的NSGA-II方法效率。结果表明,与早期的方法相比,系统可靠性增强和总系统成本降低的令人满意的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号