首页> 外文期刊>Expert systems with applications >Ensemble clustering using extended fuzzy k-means for cancer data analysis
【24h】

Ensemble clustering using extended fuzzy k-means for cancer data analysis

机译:使用扩展模糊k型癌症数据分析的集群聚类

获取原文
获取原文并翻译 | 示例

摘要

Clustering analysis is a significant research topic in discovering cancer using different profiles of gene expression, which is very important to successfully diagnose and treat the cancer decease. Many ensemble clustering methods have been developed to perform clustering using tumor data. Only few of them incorporates a significant number of input clusterings, the optimal number of clusters in each input clustering, and an appropriate ensemble method to combine input clusterings into a final clustering. In this paper, we introduce two new steps in the standard fuzzy k-means algorithm to determine the optimal number of input clusterings, and the optimal number of clusters in each clustering for ensemble clustering. The first one is to incorporate a penalty term for making the algorithm insensitive to the initialization of cluster centroids. The second one is to automate a clustering process for iteratively updating the feature weights. This step addresses the noise values in the dataset. We propose an ensemble clustering method, which combines a set of input clusterings into a final clustering having better overall quality. Experiments on real cancer gene expression profiles illustrate that the proposed algorithm outperformed the well-known clustering algorithms.
机译:聚类分析是使用不同基因表达的不同谱发现癌症的重要研究课题,这对于成功诊断和治疗癌症死亡非常重要。已经开发了许多合奏聚类方法来使用肿瘤数据进行聚类。其中少数几个包含了大量的输入群集,每个输入群集中的最佳簇数,以及将输入群集组合到最终聚类中的适当集群。在本文中,我们在标准模糊K-均值算法中引入了两个新步骤,以确定输入群集的最佳数量,以及用于集群的每个聚类中的最佳簇数。第一个是纳入惩罚术语,以使算法对集群质心的初始化不敏感的算法。第二个是自动化群集过程,用于迭代地更新特征权重。此步骤在数据集中解决了噪声值。我们提出了一个集群聚类方法,将一组输入群集组合成具有更好整体质量的最终聚类。实际癌症基因表达谱的实验说明了所提出的算法优于众所周知的聚类算法。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号