首页> 外文期刊>Expert systems with applications >A feedback-based prediction strategy for dynamic multi-objective evolutionary optimization
【24h】

A feedback-based prediction strategy for dynamic multi-objective evolutionary optimization

机译:基于反馈的动态多目标进化优化预测策略

获取原文
获取原文并翻译 | 示例

摘要

Prediction methods are widely used to solve dynamic multi-objective optimization problems (DMOPs). The key to the success of prediction methods lies in the accurate tracking of the new location of the Pareto set (PS) or Pareto front (PF) in a new environment. To improve the prediction accuracy, this paper proposes a novel feedback-based prediction strategy (FPS), which consists of two feedback mechanisms, namely correction feedback (CF) and effectiveness feedback (EF). CF is used to correct an initial prediction model. When the environment changes, CF constructs a representative individual to reflect the characteristics of the current population. The predicted solution of this individual in the new environment is calculated based on the initial prediction model. Afterward, a step size exploration method based on variable classification is introduced to adaptively correct the prediction model. EF is applied to enhance the effectiveness of re-initialization in two stages. In the first stage, half of the individuals in the population are re-initialized based on the corrected prediction model. In the second stage, EF re-initializes the rest of the individuals in the population using two rounds of roulette method based on the re-initialization effectiveness feedback of the first stage. The proposed FPS is incorporated into a dynamic multi-objective optimization evolutionary algorithm (DMOEA) based on decomposition resulting in a new algorithm denoted as MOEA/D-FPS. MOEA/D-FPS is compared with six state-of-theart DMOEAs on twenty-two different benchmark problems. The experimental results demonstrate the effectiveness and efficacy of MOEA/D-FPS in solving DMOPs.
机译:预测方法广泛用于解决动态多目标优化问题(DMOPS)。预测方法成功的关键在于在新环境中准确地跟踪Pareto Set(PS)或帕累托前部(PF)的新位置。为了提高预测精度,本文提出了一种基于反馈的基于反馈的预测策略(FPS),其包括两个反馈机制,即校正反馈(CF)和有效性反馈(EF)。 CF用于校正初始预测模型。当环境发生变化时,CF构建代表性的个人以反映当前群体的特征。基于初始预测模型计算新环境中该个体的预测解决方案。之后,引入了基于可变分类的步长探索方法以自适应地校正预测模型。 ef适用于增强两个阶段重新初始化的有效性。在第一阶段,基于校正的预测模型重新初始化人口中的一半。在第二阶段,使用基于第一阶段的重新初始化效果反馈,使用两轮轮盘赌方法重新初始化人口中的其余部分。该提出的FPS被纳入动态的多目标优化进化算法(DMOEA),该算法基于表示为MOEA / D-FPS的新算法。将MOEA / D-FPS与六个左右的DMOEAS相比,在二十两次不同的基准问题上。实验结果证明了MoEA / D-FP在求解DMOPS中的有效性和功效。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号