首页> 外文期刊>Expert systems with applications >A Gaussian process regression approach to predict the k-barrier coverage probability for intrusion detection in wireless sensor networks
【24h】

A Gaussian process regression approach to predict the k-barrier coverage probability for intrusion detection in wireless sensor networks

机译:高斯过程回归方法,以预测无线传感器网络中入侵检测的k屏障覆盖概率

获取原文
获取原文并翻译 | 示例

摘要

Sensors in a Wireless Sensor Network (WSN) sense, process, and transmit information simultaneously. They mainly find applications in agriculture monitoring, environment monitoring, smart city development and defence. These applications demand high-end performance from the WSN. However, the performance of a WSN is highly vulnerable to various types of security threats. Any intrusion may reduce the performance of the WSN and result in fatal problems. Hence, fast intrusion detection and prevention is of great use. This paper aims towards fast detection and prevention of any intrusion using a machine learning approach based on Gaussian Process Regression (GPR) model. We have proposed three methods (S-GPR, C-GPR and GPR) based on feature scaling for accurate prediction of k-barrier coverage probability. We have selected the number of nodes, sensing range, Sensor to Intruder Velocity Ratio (SIVR), Mobile to Static Node Ratio (MSNR), angle of the intrusion path, and required k as the potential features. These features are extracted using an analytical approach. Simulation results demonstrate that the proposed method III accurately predicts the k-barrier coverage probability and outperforms the other two methods (I and II) with a correlation coefficient (R = 0.85) and Root Mean Square Error (RMSE = 0.095). Further, the proposed methods achieve a higher accuracy as compared to other benchmark schemes.
机译:在无线传感器网络(WSN)中的传感器同时感测,过程和传输信息。他们主要在农业监测,环境监测,智能城市开发和防御中找到应用。这些应用需要来自WSN的高端性能。但是,WSN的性能非常容易受到各种类型的安全威胁。任何入侵都可以降低WSN的性能并导致致命问题。因此,快速入侵检测和预防非常有用。本文旨在使用基于高斯过程回归(GPR)模型的机器学习方法快速检测和预防任何入侵。我们提出了基于特征缩放的三种方法(S-GPR,C-GPR和GPR),以准确预测K阻隔覆盖概率。我们已经选择了节点的数量,感测范围,传感器到入侵速度比(SIVR),移动到静态节点比(MSNR),入侵路径的角度,并要求k作为潜在特征。使用分析方法提取这些特征。仿真结果表明,所提出的方法III精确地预测k阻隔覆盖概率,并且具有相关系数(r = 0.85)和均方根误差(Rmse = 0.095)的其他两种方法(I和II)。此外,与其他基准方案相比,所提出的方法达到更高的精度。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号