首页> 外文期刊>Expert systems with applications >NeuroEvolution of augmenting topologies for solving a two-stage hybrid flow shop scheduling problem: A comparison of different solution strategies
【24h】

NeuroEvolution of augmenting topologies for solving a two-stage hybrid flow shop scheduling problem: A comparison of different solution strategies

机译:增强拓扑的神经动力学拓扑,用于解决两阶段混合流量储存问题的问题:不同解决方案策略的比较

获取原文
获取原文并翻译 | 示例

摘要

The article investigates the application of NeuroEvolution of Augmenting Topologies (NEAT) to generate and parameterize artificial neural networks (ANN) on determining allocation and sequencing decisions in a two-stage hybrid flow shop scheduling environment with family setup times. NEAT is a machine-learning and neural architecture search algorithm, which generates both, the structure and the hyper-parameters of an ANN. Our experiments show that NEAT can compete with state-of-the-art approaches in terms of solution quality and outperforms them regarding computational efficiency. The main contributions of this article are: (i) A comparison of five different strategies, evaluated with 14 different experiments, on how ANNs can be applied for solving allocation and sequencing problems in a hybrid flow shop environment, (ii) a comparison of the best identified NEAT strategy with traditional heuristic and metaheuristic approaches concerning solution quality and computational efficiency.
机译:本文调查了增强拓扑(整洁)的神经内容应用和参数化人工神经网络(ANN)在与家庭设置时间的两级混合液流店调度环境中确定分配和排序决策。整洁是一种机器 - 学习和神经结构搜索算法,它产生了ANN的结构和超参数。我们的实验表明,在解决方案质量方面,整洁的方法可以与最先进的方法竞争,并且在计算效率方面优于它们。本文的主要贡献是:(i)使用14种不同的实验评估了五种不同策略的比较,关于如何应用于混合流动店环境中的分配和测序问题,(ii)的比较具有传统启发式和型式化方法的最佳识别策略,涉及解决方案质量和计算效率。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号