首页> 外文期刊>Expert systems with applications >Cross-project software defect prediction based on domain adaptation learning and optimization
【24h】

Cross-project software defect prediction based on domain adaptation learning and optimization

机译:基于域适应学习和优化的跨项目软件缺陷预测

获取原文
获取原文并翻译 | 示例

摘要

Software defect prediction (SDP) is very helpful for optimizing the resource allocation of software testing and improving the quality of software products. The cross-project defect prediction (CPDP) model based on machine learning is first learned through the existing training data with sufficient number and defect labels on one project, and then used to predict the defect labels of another new project with insufficient number and fewer labeled data. However, its prediction performance has a large gap compared with the within-project defect prediction (WPDP) model. The main reason is that there are usually differences between the distributions of training data in different software projects, and it has a greater impact on the prediction performance of the CPDP model. To solve this problem, the kernel twin support vector machines (KTSVMs) is used to implement domain adaptation (DA) to match the distributions of training data for different projects. Moreover, KTSVMs with DA function (called DA-KTSVM) is further used as the CPDP model in this paper. Since the parameters of DA-KTSVM have an impact on its predictive performance, these parameters are optimized by an improved quantum particle swarm optimization algorithm (IQPSO), and the optimized DA-KTSVM is called as DAKTSVMO. In order to confirm the effectiveness of DA-KTSVMO, some experiments are implemented on 17 open source software projects. Experimental results and analysis show that DA-KTSVMO can not only achieve better prediction performance than other CPDP models compared, but also achieve almost the same or better compared performance than WPDP models when the training sample data is sufficient. In addition, DA-KTSVMO can make better use of existing sufficient data knowledge and realize the reuse of defective data to improve the prediction performance of DA-KTSVMO.
机译:软件缺陷预测(SDP)对优化软件测试的资源分配并提高软件产品质量非常有帮助。首先通过在一个项目上具有足够数量和缺陷标签的现有培训数据来学习基于机器学习的跨项目缺陷预测(CPDP)模型,然后用于预测另一个新项目的缺陷标签,数量不足,较少标记数据。然而,与项目缺陷预测(WPDP)模型相比,其预测性能具有很大的差距。主要原因是不同软件项目中培训数据的分布通常存在差异,并且对CPDP模型的预测性能产生了更大的影响。为了解决这个问题,内核双支持向量机(KTSVM)用于实现域适应(DA)以匹配不同项目的培训数据的分布。此外,具有DA功能(称为DA-KTSVM)的KTSVMS在本文中进一步用作CPDP模型。由于DA-KTSVM的参数对其预测性能产生了影响,因此这些参数通过改进的量子粒子群优化算法(IQPSO)进行了优化,并且优化的DA-KTSVM称为Daktsvmo。为了确认DA-KTSVMO的有效性,在17个开源软件项目中实施了一些实验。实验结果和分析表明,当训练样本数据足够时,DA-KTSVMO不仅可以实现比其他CPDP模型的更好的预测性能,而且达到比WPDP模型几乎相同或更好的比较。此外,DA-KTSVMO可以更好地利用现有的足够的数据知识,并实现有缺陷数据的再利用以提高DA-KTSVMO的预测性能。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号