首页> 外文期刊>Expert systems with applications >Fusion loss and inter-class data augmentation for deep finger vein feature learning
【24h】

Fusion loss and inter-class data augmentation for deep finger vein feature learning

机译:深手指静脉特色学习的融合损失和阶级数据增强

获取原文
获取原文并翻译 | 示例

摘要

Finger vein recognition (FVR) based on deep learning (DL) has gained rising attention in recent years. However, the performance of FVR is limited by the insufficient amount of finger vein training data and the weak generalization of learned features. To address these limitations and improve the performance, we propose a simple framework by jointly considering intensive data augmentation, loss function design and network architecture selection. Firstly, we propose a simple inter-class data augmentation technique that can double the number of finger vein training classes with new vein patterns via vertical flipping. Then, we combine it with conventional intra-class data augmentation methods to achieve highly diversified expansion, thereby effectively resolving the data shortage problem. In order to enhance the discrimination of deep features, we design a fusion loss by incorporating the classification loss and the metric learning loss. We find that the fusion of these two penalty signals will lead to a good trade-off between the intra-class similarity and inter-class separability, thereby greatly improving the generalization ability of learned features. We also investigate various network architectures for FVR application in terms of performances and model complexities. To examine the reliability and efficiency of our proposed framework, we implement a real-time FVR system to perform end-to-end verification in a nearrealworld working condition. In challenging open-set evaluation protocol, extensive experiments conducted on three public finger vein databases and an in-house database confirm the effectiveness of the proposed method.
机译:根据深度学习(DL)的手指静脉识别(FVR)近年来越来越高。然而,FVR的性能受到不足的手指静脉训练数据和学习特征弱化的限制。为了解决这些限制并提高性能,我们通过共同考虑密集的数据增强,丢失功能设计和网络架构选择来提出简单的框架。首先,我们提出了一种简单的阶级数据增强技术,可以通过垂直翻转,用新的静脉图案增加手指静脉训练类的数量。然后,我们将其与传统的类内数据增强方法相结合以实现高度多元化的扩展,从而有效解决数据短缺问题。为了增强深度特征的辨别,我们通过纳入分类损失和度量学习损失来设计融合损失。我们发现,这两个惩罚信号的融合将导致课外相似性和阶级间可分离性之间的良好权衡,从而大大提高了学习特征的泛化能力。我们还在执行性和模型复杂性方面调查各种网络架构进行FVR应用。为了检查我们提出的框架的可靠性和效率,我们实现了一个实时FVR系统,以便在近realworld工作条件下执行端到端验证。在具有挑战性的开放式评估协议中,在三个公用手指静脉数据库和内部数据库上进行的广泛实验确认了该方法的有效性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号