首页> 外文期刊>Expert systems with applications >A novel extractive multi-document text summarization system using quantum-inspired genetic algorithm: MTSQIGA
【24h】

A novel extractive multi-document text summarization system using quantum-inspired genetic algorithm: MTSQIGA

机译:使用量子启发遗传算法的新型提取多文件摘要系统:Mtsqiga

获取原文
获取原文并翻译 | 示例

摘要

The explosive growth of textual data on the web and the problem of obtaining desired information through this enormous volume of data has led to a dramatic increase in demand for developing automatic text summarization systems. For this reason, this paper presents a novel multi-document text summarization approach, called MTSQIGA, which extracts salient sentences from source document collection to generate the summary. The proposed generic summarizer models extractive summarization as a binary optimization problem that applies a modified quantum-inspired genetic algorithm (QIGA) in its processing stage to find the best solution. Objective function of our approach plays an important role in optimizing linear combination of coverage, relevance, and redundancy factors which consists of six sentence scoring measures. To ensures the generation of a summary with predefined length limit, the presented QIGA employs a modified quantum measurement and a self-adaptive quantum rotation gate based on the quality and length of the summary. Evaluation of the proposed system was performed on DUC 2005 and 2007 benchmark datasets in terms of ROUGE standard measures. Comparison of MTSQIGA with existing state-of-the-art approaches for multi-document summarization shows superior performance of the proposed systems over other methods on both existing benchmark datasets. It also indicates promising efficiency of our proposed algorithm on applying quantum-inspired genetic algorithm to the text summarization tasks.
机译:通过这种巨大的数据获取所需信息的文本数据的爆炸性增长导致了对开发自动文本摘要系统的需求急剧增加。因此,本文提出了一种名为MTSQIGA的新型多文件文本摘要方法,其中从源文档集合中提取突出的句子来生成摘要。所提出的通用总结器模型作为二进制优化问题的提取综准,其在其处理阶段应用修改量子启发遗传算法(QIGA)以找到最佳解决方案。我们的方法的目标函数在优化由六句评分措施组成的覆盖率,相关性和冗余因素的线性组合方面发挥着重要作用。为了确保以预定义的长度限制生成摘要,所呈现的QIGA基于摘要的质量和长度采用修改的量子测量和自适应量子旋转门。在胭脂标准措施方面,在DUC 2005和2007年基准数据集上进行了评估。 MTSQIGA与现有的多文件摘要方法的比较显示了所提出的系统在现有基准数据集上的其他方法上的卓越性能。它还表明了我们提出的算法在将量子启发遗传算法应用于文本摘要任务的算法的有希望的效率。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号