首页> 外文期刊>Expert systems with applications >Memetic Harris Hawks Optimization: Developments and perspectives on project scheduling and QoS-aware web service composition
【24h】

Memetic Harris Hawks Optimization: Developments and perspectives on project scheduling and QoS-aware web service composition

机译:Memetic Harris Hawks优化:项目调度和QoS感知Web服务组成的开发和观点

获取原文
获取原文并翻译 | 示例

摘要

Harris hawks optimization (HHO) is one of the leading optimization approaches due to its efficacy and multi-choice structure with time-varying components. The HHO has been applied in various areas due to its simplicity and outstanding performance. However,the original HHO can be improved and evolved in terms of convergence trends, and it is prone to local optimization under certain circumstances. Therefore, the performance and robustness of the algorithm need to be further improved. In our research, based on the core principle of evolutionary methods, we first developed an elite evolutionary strategy (EES) and then utilized it to advance HHO's convergence speed and ability to jump out of the local optimum. We named such an enhanced hybrid algorithm EESHHO in this paper. To verify the effectiveness and robustness of the EESHHO, we tested it on 29 numerical optimization test functions, including 23 classic basic test functions and 6 composite test functions from the IEEE CEC2017 special session. Moreover, we apply the EESHHO on resource-constrained project scheduling and QoS-aware web service composition problems to further validate the effectiveness of EESHHO. The experimental results show that proposed EESHHO has faster convergence speed and better optimization performance by comparing it with other mainstream algorithms.
机译:Harris Hawks Optimization(HHO)是由于其功效和多选择结构具有时变组件的优化方法之一。由于其简单性和出色的性能,HHO已应用于各个领域。然而,在收敛趋势方面可以改善和进化原始的HHO,并且在某些情况下易于局部优化。因此,需要进一步提高算法的性能和稳健性。在我们的研究中,基于进化方法的核心原则,我们首先制定了精英进化战略(EES),然后利用它来推进HHO的收敛速度和跳出当地最佳的能力。我们在本文中命名为这样的增强混合算法Eeshho。为了验证EESHHO的有效性和稳健性,我们在29个数值优化测试功能上进行了测试,包括来自IEEE CEC2017特别会话的23个经典基本测试功能和6个复合测试功能。此外,我们将EESHHO应用于资源受限的项目调度和QoS感知Web服务组合问题,以进一步验证Eeshho的有效性。实验结果表明,通过将其与其他主流算法进行比较,提出的EESHHO具有更快的收敛速度和更好的优化性能。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号