首页> 外文期刊>Expert systems with applications >Collaborative community-specific microblog sentiment analysis via multi-task learning
【24h】

Collaborative community-specific microblog sentiment analysis via multi-task learning

机译:通过多任务学习协作社区特定的微博情感分析

获取原文
获取原文并翻译 | 示例

摘要

Microblog sentiment analysis has become a hot research area due to its wide applications. There are some methods utilizing social context, but they only built a global sentiment analysis model, failing to extract personalized expressions. Some personalized methods have been proposed to deal with this problem, but they suffer from data sparseness and inefficiency. Based on personalized sentiment analysis methods, we exploit social context information and capture users' variable and distinctive expressions at a community level to handle these problems. In particular, we propose a collaborative microblog sentiment analysis approach. In our approach, two classifiers are constructed. One is the global microblog sentiment analysis model which can exploit the sentiment shared by all users. One is the community-specific microblog sentiment analysis model which can extract sentiment influenced by user personalities. In addition, we extract community similarity knowledge and employ it to improve the learning process of the community-specific sentiment model. Moreover, we incorporate social contexts into this model as regularization to encourage the sharing sentiment between connected microblogs. An accelerated algorithm is introduced to solve our model. Experiments on two real datasets show that our model can advance the performance of microblog sentiment classification effectively and outperform state-of-art methods significantly.
机译:由于其应用范围广,微博情绪分析已成为一个热门研究区域。有一些方法利用社交背景,但它们只构建了一个全局情感分析模型,无法提取个性化表达式。已经提出了一些个性化方法来处理这个问题,但它们遭受数据稀疏性和效率低下。基于个性化情感分析方法,我们在社区级别利用社会上下文信息并捕获用户的变量和独特的表达来处理这些问题。特别是,我们提出了一种协同微博情感分析方法。在我们的方法中,构建了两个分类器。一个是全球微博情感分析模型,可以利用所有用户共享的情绪。一个是特定于社区的微博情绪分析模型,可以提取受用户人物影响的情绪。此外,我们提取社区相似度知识,并雇用它以改善社区特定情绪模型的学习过程。此外,我们将社会背景纳入了该模型,作为正规化,以鼓励连接的微博之间的共享情绪。引入了加速算法来解决我们的模型。两个真实数据集的实验表明,我们的模型可以显着提高微博情感分类的性能,显着优于最先进的方法。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号