首页> 外文期刊>Expert systems with applications >Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering
【24h】

Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering

机译:使用CNN,LSTM,CNN-LSTM和Spatiotemporal聚类的北京多小时和多网站空气质量指标预测

获取原文
获取原文并翻译 | 示例

摘要

Effective air quality forecasting models are helpful for timely prevention and control of air pollution. However, the spatiotemporal distribution characteristics of air quality have not been fully considered in previous model development. This study attempts to establish a multi-time, multi-site forecasting model of Beijing's air quality by using deep learning network models based on spatiotemporal clustering and to compare them with a backpropagation neural network (BPNN). For the overall forecasting, the performances in next-hour forecasting were ranked in ascending order of the BPNN, the convolutional neural network (CNN), the long short-term memory (LSTM) model, and the CNN-LSTM, with the LSTM as the optimal model in the multiple-hour forecasting. The performance of the seasonal forecasting was not significantly improved compared to the overall forecasting. For the spatial clustering-based forecasting, cluster 2 forecasting generally outperforms cluster 1 and the overall forecasting. Overall, either the seasonal or the spatial clustering-based forecasting is more suitable for the improvement of the forecasting in a certain season or cluster. In terms of model type, both the CNN-LSTM and the LSTM generally have better performance than the CNN and the BPNN.
机译:有效的空气质量预测模型有助于及时预防和控制空气污染。然而,在以前的模型开发中,空气质量的时空分布特征尚未完全考虑。本研究试图通过使用基于时空聚类的深度学习网络模型建立北京空气质量的多次多站点预测模型,并将它们与背部化神经网络(BPNN)进行比较。对于整体预测,下一小时预测的性能按BPNN,卷积神经网络(CNN),长短期记忆(LSTM)模型和CNN-LSTM的升序排列,是LSTM的多小时预测中的最佳模型。与整体预测相比,季节性预测的表现并未显着提高。对于基于空间聚类的预测,群集2预测通常优于聚类1和整体预测。总的来说,季节性或基于空间聚类的预测更适合改善某个季节或群集的预测。就模型类型而言,CNN-LSTM和LSTM都与CNN和BPNN具有更好的性能。

著录项

  • 来源
    《Expert systems with applications》 |2021年第5期|114513.1-114513.15|共15页
  • 作者单位

    Sun Yat Sen Univ Sch Geog & Planning Guangzhou 510275 Guangdong Peoples R China|Chinese Acad Sci Inst Geog Sci & Nat Resources Res Key Lab Land Surface Pattern & Simulat Beijing 100101 Peoples R China;

    Sun Yat Sen Univ Sch Geog & Planning Guangzhou 510275 Guangdong Peoples R China|Chinese Acad Sci Inst Geog Sci & Nat Resources Res Key Lab Ecosyst Network Observat & Modeling Beijing 100101 Peoples R China;

    Sun Yat Sen Univ Sch Geog & Planning Guangzhou 510275 Guangdong Peoples R China|Chinese Acad Sci Inst Geog Sci & Nat Resources Res State Key Lab Resources & Environm Informat Syst Beijing 100101 Peoples R China;

    Sun Yat Sen Univ Sch Geog & Planning Guangzhou 510275 Guangdong Peoples R China|Southern Marine Sci & Engn Guangdong Lab Zhuhai Zhuhai 519082 Peoples R China|Univ Regina Inst Energy Environm & Sustainable Communities Regina SK S4S 0A2 Canada;

    Sun Yat Sen Univ Sch Geog & Planning Guangzhou 510275 Guangdong Peoples R China;

    Sun Yat Sen Univ Sch Geog & Planning Guangzhou 510275 Guangdong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    LSTM; CNN; Forecasting; AQI; Spatiotemporal clustering;

    机译:LSTM;CNN;预测;AQI;时空聚类;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号