首页> 外文期刊>Expert systems with applications >A review of deep learning methods for semantic segmentation of remote sensing imagery
【24h】

A review of deep learning methods for semantic segmentation of remote sensing imagery

机译:遥感图像语义分割深度学习方法的综述

获取原文
获取原文并翻译 | 示例

摘要

Semantic segmentation of remote sensing imagery has been employed in many applications and is a key research topic for decades. With the success of deep learning methods in the field of computer vision, researchers have made a great effort to transfer their superior performance to the field of remote sensing image analysis. This paper starts with a summary of the fundamental deep neural network architectures and reviews the most recent developments of deep learning methods for semantic segmentation of remote sensing imagery including non conventional data such as hyperspectral images and point clouds. In our review of the literature, we identified three major challenges faced by researchers and summarize the innovative development to address them. As tremendous efforts have been devoted to advancing pixel-level accuracy, the emerged deep learning methods demonstrated much-improved performance on several public data sets. As to handling the non-conventional, unstructured point cloud and rich spectral imagery, the performance of the state-of-the-art methods is, on average, inferior to that of the satellite imagery. Such a performance gap also exists in learning from small data sets. In particular, the limited non-conventional remote sensing data sets with labels is an obstacle to developing and evaluating new deep learning methods.
机译:许多应用中,遥感图像的语义分割已被采用,并且是几十年的关键研究课题。随着计算机愿景领域的深度学习方法的成功,研究人员努力将它们的卓越性能转移到遥感图像分析领域。本文始于基本的深度神经网络架构的摘要,并审查了遥感图像的语义分割的最新发展的最新发展,包括非传统数据,如高光谱图像和点云。在我们对文献的审查中,我们确定了研究人员面临的三项主要挑战,并总结了解决这些问题的创新发展。由于巨大的努力致力于推进像素级别准确性,因此出现的深度学习方法在几种公共数据集中展示了更好的性能。关于处理非传统的非结构化点云和丰富的光谱图像,最先进的方法的性能平均不如卫星图像的性能。从小数据集中学习此类性能差距也存在。特别是,具有标签的有限的非传统遥感数据集是开发和评估新的深度学习方法的障碍。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号