首页> 外文期刊>Expert systems with applications >A novel association rule mining method for the identification of rare functional dependencies in Complex Technical Infrastructures from alarm data
【24h】

A novel association rule mining method for the identification of rare functional dependencies in Complex Technical Infrastructures from alarm data

机译:一种新的关联规则挖掘方法,用于识别来自报警数据的复杂技术基础设施中的罕见功能依赖性

获取原文
获取原文并翻译 | 示例

摘要

This work presents a data-driven method for identifying rare functional dependencies among components of different systems of Complex Technical Infrastructures (CTIs) from large-scale databases of alarm messages. It is based on the representation of the alarm data in a binary form, the use of a novel association rule mining algorithm properly tailored for discovering rare dependencies among components of different systems and on the identification of groups of functionally dependent components. The proposed method is applied to a synthetic alarm database generated by a simulated CTI model and to a real large-scale database of alarms collected in the CTI of CERN (European Organization for Nuclear Research). The obtained results show the effectiveness of the proposed method.
机译:该工作提供了一种数据驱动方法,用于从警报消息的大规模数据库中识别不同系统的不同系统的组件之间的稀有功能依赖性。它基于以二进制形式的警报数据的表示,使用新的关联规则挖掘算法适当地定制,以便在不同系统的组件中发现罕见的依赖性以及在功能上有关组件的识别上的识别。该提出的方法应用于由模拟CTI模型生成的合成警报数据库以及CERN CTI中收集的真正的大规模报警数据库(欧洲核研究组织)。得到的结果表明了该方法的有效性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号