首页> 外文期刊>Expert systems with applications >Neighborhood global learning based flower pollination algorithm and its application to unmanned aerial vehicle path planning
【24h】

Neighborhood global learning based flower pollination algorithm and its application to unmanned aerial vehicle path planning

机译:基于全球学习的花卉授粉算法及其在无人机路径规划中的应用

获取原文
获取原文并翻译 | 示例

摘要

Flower pollination algorithm (FPA) is a meta-heuristic optimization algorithm that imitates the pollination phenomenon of flowering plants in nature. Due to this algorithm is prone to premature convergence when solving complex optimization problems. So this paper introduces a neighborhood global learning based flower pollination algorithm(NGFPA). Firstly, we analyze the FPA using the constant coefficient differential equation and change the FPA?s global equation. Secondly, we build a neighborhood global learning to enhance population diversity. Finally, the population reconstruction mechanism is added to inhibit the population premature convergence. The convergence of NGFPA is proven using the knowledge of differential equations and stochastic function analysis. We test the performance of NGFPA by optimizing CEC2017. Experiment results show that NGFPA has better performance in comparison with other swarm intelligence algorithms. Furthermore, NGFPA is used to solve the problem of unmanned aerial vehicle (UAV) path planning. Simulation results indicate that NGFPA can obtain smoother paths in different obstacle environments. Therefore, NGFPA is effective and valuable.
机译:花卉授粉算法(FPA)是一种荟萃启发式优化算法,模仿了开花植物本质上的授粉现象。由于这种算法在解决复杂优化问题时容易发生早熟的会聚。所以本文介绍了一种邻里全球学习的花授粉算法(NGFPA)。首先,我们使用恒定系数微分方程分析FPA,改变FPA的全局方程。其次,我们建立了一个邻里全球学习,以提高人口多样性。最后,添加了人口重建机制以抑制人口过早收敛。使用微分方程和随机函数分析的知识证明了NGFPA的收敛性。我们通过优化CEC2017来测试NGFPA的性能。实验结果表明,与其他群体智能算法相比,NGFPA具有更好的性能。此外,NGFPA用于解决无人驾驶飞行器(UAV)路径规划的问题。仿真结果表明,NGFPA可以在不同的障碍环境中获得更平滑的路径。因此,NGFPA是有效和有价值的。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号