首页> 外文期刊>Expert systems with applications >A modified equilibrium optimizer using opposition-based learning and novel update rules
【24h】

A modified equilibrium optimizer using opposition-based learning and novel update rules

机译:一种使用基于反对派的学习和新颖更新规则的改进的均衡优化器

获取原文
获取原文并翻译 | 示例

摘要

Equilibrium Optimizer (EO) is a newly developed physics-based metaheuristic algorithm that is based on control volume mass balance models, and has shown competitive performance with other state-of-the-art algorithms. However, the original EO has the disadvantages of a low exploitation ability, ease of falling into local optima, and an immature balance between exploration and exploitation. To address these shortcomings, this paper proposes a modified EO (m-EO) using opposition-based learning (OBL) and novel update rules that incorporates four main modifications: the definition of the concentrations of some particles based on OBL, a new nonlinear time control strategy, novel population update rules and a chaos-based strategy. Based on these modifications, the optimization precision and convergence speed of the original EO are greatly improved. The validity of m-EO is tested on 35 classical benchmark functions, 25 of which have variants belonging to multiple difficulty categories (Dim = 30, 100, 300, 500 and 1000). In addition, m-EO is used to solve three real-world engineering design problems. The experimental results and two different statistical tests demonstrate that the proposed m-EO shows higher performance than original EO and other state-of-the-art algorithms.
机译:均衡优化器(EO)是一种新开发的基于物理学的算法,基于控制量质量平衡模型,并显示了与其他最先进的算法的竞争性能。然而,原始EO具有低剥削能力的缺点,易于陷入本地最佳探索和勘探和剥削之间的不成熟平衡。为了解决这些缺点,本文使用基于反对派的学习(OBL)和新颖的更新规则来提出修改的EO(M-EO),其中包含了四个主要修改:基于OBL的一些粒子的浓度定义,新的非线性时间控制策略,新颖的人口更新规则和基于混乱的策略。基于这些修改,原始EO的优化精度和收敛速度大大提高。在35个古典基准函数中测试了M-EO的有效性,其中25个具有属于多个难度类别的变体(DIM = 30,100,300,500和1000)。此外,M-EO用于解决三个真实的工程设计问题。实验结果和两个不同的统计测试表明,所提出的M-EO显示出比原始EO和其他最先进的算法更高的性能。

著录项

  • 来源
    《Expert systems with applications》 |2021年第5期|114575.1-114575.19|共19页
  • 作者单位

    Guizhou Univ Minist Educ Key Lab Adv Mfg Technol Guiyang 550025 Guizhou Peoples R China;

    Guizhou Univ Minist Educ Key Lab Adv Mfg Technol Guiyang 550025 Guizhou Peoples R China;

    Guizhou Univ Minist Educ Key Lab Adv Mfg Technol Guiyang 550025 Guizhou Peoples R China|South China Univ Technol Coll Mech & Automot Engn Guangzhou 510640 Guangdong Peoples R China;

    Guizhou Univ Minist Educ Key Lab Adv Mfg Technol Guiyang 550025 Guizhou Peoples R China;

    Guizhou Univ Minist Educ Key Lab Adv Mfg Technol Guiyang 550025 Guizhou Peoples R China|Yuan Ze Univ Dept Ind Engn & Management Taoyuan 32003 Taiwan;

    Univ Putra Malaysia Fac Engn Dept Mech & Mfg Engn Serdang 43400 Selangor Malaysia|Guizhou Commun Polytech Dept Mech & Elect Engn Guiyang 551400 Guizhou Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Equilibrium optimizer; Novel update rules; Opposition-based learning; Metaheuristic;

    机译:均衡优化器;新颖的更新规则;基于反对的学习;成群质主义;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号