首页> 外文期刊>Expert systems with applications >A propositionalization method of multi-relational data based on Grammar-Guided Genetic Programming
【24h】

A propositionalization method of multi-relational data based on Grammar-Guided Genetic Programming

机译:一种基于语法引导遗传编程的多关系数据的命题方法

获取原文
获取原文并翻译 | 示例

摘要

The propositionalization process tries to find distinctive features of the examples in a database to transform such relational data into a simpler representation. More informative features have a positive impact on the classification capabilities of the learning algorithms. In this work, we propose a new propositionalization method, which generates complex Boolean attributes using Grammar-Guided Genetic Programming (G3P). The generated attributes are compound formulas that combine word items coming from a Bag-of-Words (BoW) representation using Boolean operators. The proposal was assessed against three state-of-the-art simple-instance and multiple-instance propositionalization methods. The experimental results show that the proposed method achieves an improvement in terms of classification accuracy and a considerable reduction in the dimensionality of the resulting datasets.
机译:命令化过程尝试找到数据库中示例的独特特征,以将这种关系数据转换为更简单的表示。更具信息丰富的功能对学习算法的分类能力产生积极影响。在这项工作中,我们提出了一种新的命题方法,它使用语法引导遗传编程(G3P)生成复杂的布尔属性。生成的属性是使用布尔运算符组合来自文字袋(弓)表示的单词项的复合公式。该提案是针对三种最先进的简单实例和多实例命令化方法进行评估。实验结果表明,该方法达到了分类精度方面的改进,并在所得数据集的维度方面相当降低。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号