首页> 外文期刊>Expert systems with applications >An interpretable sequential three-way recommendation based on collaborative topic regression
【24h】

An interpretable sequential three-way recommendation based on collaborative topic regression

机译:基于协作主题回归的可解释的顺序三元推荐

获取原文
获取原文并翻译 | 示例

摘要

Owing to the imbalance of observed data and user's preference, it is necessary and meaningful to think over the multilevel characteristics of recommendation information (RI) during the recommendation process. At the same time, to better summarize user's preference and enhance user's beliefs, the interpretability of recommendation results also become more and more important in recommender system (RS). In view of the multilevel characteristics of RI and the interpretability of recommendation results, this paper proposes a novel interpretable sequential three-way recommendation strategy, namely, CTR-based cost-sensitive sequential three-way recommendation (CTR-CS3WR). First, in order to construct the interpretable granular features and multilevel information, we introduce collaborative topic regression (CTR) and design three novel granulation methods: PMF-based, LDA-based and CTR-based granulation method. Then, with the consideration of decision cost and time cost, a sequential three-way recommendation strategy is proposed to realize the multilevel recommendation. Finally, extensive experiments on two CiteUlike datasets verify the effectiveness of our proposed granulation methods and recommendation strategy.
机译:由于观察到的数据和用户偏好的不平衡,在推荐过程中,需要在推荐信息(RI)的多级特征上是必要和有意义的。与此同时,为了更好地总结用户的偏好和提高用户的信念,推荐结果的可解释性在推荐系统(RS)中也变得越来越重要。鉴于RI的多级特征和推荐结果的可解释性,本文提出了一种新颖的可解释的连续三元推荐策略,即基于CTR的成本敏感的连续三元推荐(CTR-CS3WR)。首先,为了构建可解释的粒度特征和多级信息,我们引入协作主题回归(CTR)和设计三种新颖的造粒方法:PMF基,基于LDA和基于CTR的造粒方法。然后,随着决策成本和时间成本的考虑,提出了一种顺序三元推荐策略来实现多级推荐。最后,对两个Citeulike数据集进行了广泛的实验,验证了我们提出的肉芽方法和推荐战略的有效性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号