首页> 外文期刊>Expert systems with applications >Kernel meets recommender systems: A multi-kernel interpolation for matrix completion
【24h】

Kernel meets recommender systems: A multi-kernel interpolation for matrix completion

机译:内核符合推荐系统:矩阵完成的多核插值

获取原文
获取原文并翻译 | 示例

摘要

A primary research direction for recommender systems is matrix completion, which attempts to recover the missing values in a user-item rating matrix. There are numerous approaches for rating tasks, which are mainly classified into latent factor models and neighborhood-based models. Most neighborhood-based models seek similar neighbors by computing similarities in the original data space for final predictions. In this paper, we propose a new neighborhood-based interpolation model with a kernelized matrix completion framework, with the impact weights provided by neighbors computed in a new Hilbert space containing more features. In our model, the kernel function is combined with a similarity measurement to achieve better approximation for unknown ratings. Furthermore, we extend our model with a non-linear multi-kernel framework which learns weights automatically to improve the model. Finally, we conduct extensive experiments on several real-world datasets. The outcomes show that the proposed methods work effectively and improve the performance of the rating prediction task compared to both the traditional and state-of-the-art approaches.
机译:推荐系统的主要研究方向是矩阵完成,其尝试在用户项评级矩阵中恢复缺失值。评级任务有许多方法,主要分为潜在因子模型和基于邻域的模型。基于邻域的模型通过计算原始数据空间中的相似性来寻求类似的邻居。在本文中,我们提出了一种新的基于邻域的插值模型,具有内核矩阵完成框架,其中邻居提供的影响权重在包含更多特征的新希尔伯特空间中计算。在我们的模型中,内核功能与相似性测量相结合,以实现未知额定值的更好近似。此外,我们使用非线性多内核框架扩展我们的模型,该框架自动学习权重以改善模型。最后,我们对几个现实世界数据集进行了广泛的实验。结果表明,与传统和最先进的方法相比,所提出的方法有效地工作,提高评级预测任务的性能。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号