首页> 外文期刊>Expert Systems with Application >Rotation invariant angle-density based features for an ice image classification system
【24h】

Rotation invariant angle-density based features for an ice image classification system

机译:旋转不变角度基于冰图像分类系统的特征

获取原文
获取原文并翻译 | 示例

摘要

One of the natural disasters which cause economic loss and are a serious threat to society are ice covering phenomena for overhead transmission power lines. This paper presents a new method for ice and non-ice image classification to improve ice detection results. The proposed method uses wavelet decomposition to extract robust features, such as those invariant to rotation, scaling and thickness of ice for classification. The proposed approach estimates the average of the high frequency sub-bands for each level. Then it obtains Canny edge components for the average wavelet image at each level. Our approach studies shape of edge components to identify the presence of ice. To achieve this, the proposed method finds the major and minor axes for each edge component, and then draws parallel lines to the major and minor axes over the edge components. For each parallel line to the major and minor axes, the proposed approach further extracts angle and density-based features for pixels that fall on the parallel lines to the major and minor axes. Next, our method selects features from each average wavelet image and further calculates the mean for the feature vectors corresponding to the level, which results in a feature matrix. Finally, the feature matrix is fed to a Multi-Layer Perceptron Neural Network for classifying ice and non-ice images. Experimental results on a diversified dataset and comparative study with an existing method show that the proposed method is useful for accurate ice detection with better accuracy. (C) 2020 Elsevier Ltd. All rights reserved.
机译:导致经济损失的自然灾害之一,对社会严重威胁是架空传输电力线的冰覆盖现象。本文提出了一种新方法,用于冰和非冰图像分类,以改善冰检测结果。所提出的方法使用小波分解来提取鲁棒特征,例如这种不变性的旋转,缩放和冰厚度的分类。所提出的方法估计每个级别的高频子带的平均值。然后它获得每个级别的平均小波图像的罐头边缘组件。我们的方法研究边缘部件的形状以识别冰的存在。为此,所提出的方法为每个边缘分量找到了主要和次轴,然后将平行线绘制到边缘组件上的主要和次轴。对于主要和次轴的每个平行线,所提出的方法进一步提取了基于角度和基于密度的特征,用于落在主要和次轴上的平行线上的像素。接下来,我们的方法选择来自每个平均小波图像的特征,并进一步计算与级别对应的特征向量的平均值,这导致特征矩阵。最后,将特征矩阵馈送到多层的Perceptron神经网络,用于对冰和非冰图像进行分类。实验结果对多元化数据集和具有现有方法的比较研究表明,该方法可用于精确冰检测,具有更好的准确性。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号