首页> 外文期刊>Expert Systems with Application >Self-supervised multimodal reconstruction of retinal images over paired datasets
【24h】

Self-supervised multimodal reconstruction of retinal images over paired datasets

机译:复合数据集的自我监督多峰重建视网膜图像

获取原文
获取原文并翻译 | 示例

摘要

Data scarcity represents an important constraint for the training of deep neural networks in medical imaging. Medical image labeling, especially if pixel-level annotations are required, is an expensive task that needs expert intervention and usually results in a reduced number of annotated samples. In contrast, extensive amounts of unlabeled data are produced in the daily clinical practice, including paired multi-modal images from patients that were subjected to multiple imaging tests. This work proposes a novel self-supervised multimodal reconstruction task that takes advantage of this unlabeled multimodal data for learning about the domain without human supervision. Paired multimodal data is a rich source of clinical information that can be naturally exploited by trying to estimate one image modality from others. This multimodal reconstruction requires the recognition of domain-specific patterns that can be used to complement the training of image analysis tasks in the same domain for which annotated data is scarce.In this work, a set of experiments is performed using a multimodal setting of retinography and fluorescein angiography pairs that offer complementary information about the eye fundus. The evaluations performed on different public datasets, which include pathological and healthy data samples, demonstrate that a network trained for self-supervised multimodal reconstruction of angiography from retinography achieves unsupervised recognition of important retinal structures. These results indicate that the proposed self-supervised task provides relevant cues for image analysis tasks in the same domain. (c) 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
机译:数据稀缺是医疗成像中深度神经网络培训的重要约束。医学图像标签,特别是如果需要像素级注释,是一种昂贵的任务,需要专家干预,并且通常导致减少的注释样本。相反,在日常临床实践中产生了广泛的未标记数据,包括来自对多重成像测试的患者的配对多模态图像。这项工作提出了一种新颖的自我监督的多模式重建任务,利用这种未标记的多模式数据,以学习没有人为监督的领域。配对的多模式数据是一种丰富的临床信息来源,可以通过尝试从其他人估计一个图像模型来自然地利用。这种多模态重建需要识别可以用于补充的域特定模式,该模式可用于补充相同域中的图像分析任务的培训,其中注释数据是稀缺的。在这项工作中,使用验证造币的多模码设置进行一组实验和荧光素血管造影配对,提供有关眼底的互补信息。在不同公共数据集上进行的评估包括病理和健康数据样本,证明了一种从retifography血管造影血管造影的自我监督多峰重建培训的网络实现了重要的视网膜结构的识别。这些结果表明,所提出的自我监督任务为同一领域的图像分析任务提供了相关提示。 (c)2020提交人。由elsevier有限公司出版。这是CC By-NC-ND许可下的开放式访问文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。

著录项

  • 来源
    《Expert Systems with Application》 |2020年第12期|113674.1-113674.14|共14页
  • 作者单位

    Univ A Coruna CITIC Res Ctr Informat & Commun Technol La Coruna Spain|Univ A Coruna Dept Comp Sci La Coruna Spain;

    Univ A Coruna CITIC Res Ctr Informat & Commun Technol La Coruna Spain|Univ A Coruna Dept Comp Sci La Coruna Spain;

    Univ A Coruna CITIC Res Ctr Informat & Commun Technol La Coruna Spain|Univ A Coruna Dept Comp Sci La Coruna Spain;

    Univ A Coruna CITIC Res Ctr Informat & Commun Technol La Coruna Spain|Univ A Coruna Dept Comp Sci La Coruna Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Self-supervised learning; Eye fundus; Deep learning; Multimodal; Retinography; Angiography;

    机译:自我监督学习;眼底;深度学习;多式联版;术血管造影;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号