首页> 外文期刊>Expert Systems with Application >Dynamic prioritization of surveillance video data in real-time automated detection systems
【24h】

Dynamic prioritization of surveillance video data in real-time automated detection systems

机译:实时自动检测系统中监控视频数据的动态优先级

获取原文
获取原文并翻译 | 示例

摘要

Automated object detection systems are a key component of modern surveillance applications. These systems rely on computationally expensive computer vision algorithms that perform object detection on visual data recorded by surveillance cameras. Due to the security and safety implications of these systems, this visual data st be processed accurately and in real-time. However, many of the frames that are created by the surveillance cameras may be of low importance, providing little or no useful information to the object detection system. Sub-sampling surveillance data by prioritizing important camera frames can greatly reduce unnecessary computation. Consequently, several works have explored dynamic visual data sub-sampling using various modalities of information (ie. spatial or temporal information) for prioritization. Few works, however, have combined and evaluated different modalities of information together for real-time prioritization of visual surveillance data. This work evaluates several individual and combined prioritization metrics derived from different modalities of information for use with a modern deep learning-based object detection algorithm. Both processing time and object detection rate are measured and used to rank the prioritization metrics. A novel approach that uses the historical detection confidences created by the object detection algorithm was demonstrated to be the best standalone prioritization metric. Additionally, a novel ensemble method that uses a KNN regressor to combine the best of the previously evaluated metrics to create a dynamic prioritization method is presented. This ensemble approach is shown to increase the object detection rate by up to 60% as compared to a static sub-sampling baseline as demonstrated using three publicly available datasets. The increased object detection rate was achieved while meeting the real-time constraints of the automated object detection system. (c) 2020 Elsevier Ltd. All rights reserved.
机译:自动对象检测系统是现代监控应用的关键组成部分。这些系统依赖于计算昂贵的计算机视觉算法,该算法在监控摄像机记录的视觉数据上执行对象检测。由于这些系统的安全性和安全影响,该视觉数据ST准确地和实时处理。然而,由监控摄像机创建的许多帧可能具有低的重要性,为物体检测系统提供很少或没有有用的信息。通过优先考虑重要的相机帧,可以大大减少不必要的计算来进行副采样监控数据。因此,几个作品使用了使用各种信息模式(即空间或时间信息)来探索动态视觉数据子采样以进行优先级排序。然而,很少有效,并在一起结合并评估了不同的信息模式,以便进行视觉监控数据的实时优先级。这项工作评估了源自不同信息模式的多个个人和组合优先级度量,以与现代深度基于深度学习的对象检测算法。测量处理时间和对象检测率并用于对优先级度量进行排名。使用物体检测算法产生的历史检测信心的一种新方法被证明是最好的独立优先级度量。另外,呈现了一种使用KNN回归的新的集合方法来组合以创建动态优先级方法的先前评估的度量。与使用三个公开可用的数据集所展示的静态子采样基线相比,该集合方法显示在静态子采样基线相比,将物体检测率高达60%。在满足自动对象检测系统的实时约束的同时实现了增加的物体检测率。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号