首页> 外文期刊>Expert systems with applications >Optimization-based automated unsupervised classification method: A novel approach
【24h】

Optimization-based automated unsupervised classification method: A novel approach

机译:基于优化的自动化无监督分类方法:一种新方法

获取原文
获取原文并翻译 | 示例

摘要

Unsupervised classification algorithms are methods for the analysis of remotely sensed images. Since these methods do not include a training phase, they require less time to apply and are more practical to use. Traditional unsupervised classification methods work with parameters given by the user, such as the number of classes, the stop criterion or the number of iterations of the algorithm. Determining the optimum values of these parameters to obtain successful classification result is a major problem.In this study, we propose two new methods, the weighted density based optimized classification method (DBOC-Weighted) and the automatic density based optimized classification method (DBOCAutomatic). Both work automatically without the need for parameters from the user, but the DBOCWeighted only requires layer weights. These methods consist of data range expansion, useful data selection, segmentation and optimization stages, and perform the classification automatically. Both create new layers of data using remotely sensed images. After creating the initial classes based on density from all the data layers, the results are created by optimizing all classes in terms of quality indices.Four Sentinel 2 images are used to test the performance of the proposed methods. These images are selected from regions that have different geographical, climatic and vegetation properties. The results obtained are compared with the unsupervised classification methods frequently used in the literature. The accuracy analysis results show that the proposed classification algorithms produce satisfactory accuracy compared to the results of other algorithms. The results show that the proposed methods can be used successfully in the creation of expert and intelligent analysis systems, by eliminating user induced error in the analysis of remotely sensed images. Thus, smart analysis tools can be created so that users from various professional disciplines can easily use them without being image processing specialists. (c) 2020 Elsevier Ltd. All rights reserved.
机译:无监督的分类算法是分析远程感测图像的方法。由于这些方法不包括训练阶段,因此它们需要更少的时间施用并且更加实际使用。传统的无监督分类方法与用户给出的参数,例如类的数量,停止标准或算法的迭代次数。确定这些参数的最佳值以获得成功的分类结果是一个主要问题。在本研究中,我们提出了两种新方法,加权密度基于优化分类方法(DBOC加权)和自动密度基于优化分类方法(DBOCAUTOMATOM) 。两者都在自动工作,无需来自用户的参数,但DBOC重量只需要层权重。这些方法包括数据范围扩展,有用的数据选择,分段和优化阶段,并自动执行分类。两者都使用远程感测图像创建新的数据层。在基于来自所有数据层的密度创建初始类之后,通过在优质索引中优化所有类来创建结果.Four Sentinel 2图像用于测试所提出的方法的性能。这些图像选自不同地理,气候和植被特性的区域。将获得的结果与文献中经常使用的无监督分类方法进行比较。精度分析结果表明,与其他算法的结果相比,所提出的分类算法产生令人满意的精度。结果表明,通过消除对远程感测图像的分析中的用户感应误差,可以成功地使用所提出的方法在专家和智能分析系统中。因此,可以创建智能分析工具,以便来自各种专业学科的用户可以轻松使用它们而不是图像处理专家。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号